Content

General Safety Summary ... 1

Chapter 1 Getting Start ... 2
 System Requirement ... 3
 Install Software .. 4
 Install Driver ... 7
 General Features ... 10
 Function Check ... 10
 Probe Compensation .. 12
 Self Calibration ... 13
 Accessories .. 13

Chapter 2 Operating Basics .. 14
 The User’s Interface .. 15
 The Menu System ... 17
 The Vertical System .. 18
 The Horizontal System .. 19
 The Trigger System ... 20
 Input Connectors .. 21

Chapter 3 Understanding Function ... 22
 Set Oscilloscope ... 23
 Set Vertical Systems .. 23
 Set Horizontal System ... 34
 Set Trigger System ... 35
 Measure Signal .. 37

The User’s Manual
Chapter 4 Application Example

Simple Measurement

Capturing a Single-Shot Signal

The Application of the X-Y Operation

Taking Cursor Measurements

Appendix

Appendix A: Specifications

Appendix B: General Maintenance

Appendix C: Services and Support
General Safety Summary

Review the following safety precautions carefully before operate the device to avoid any personal injuries or damages to the device and any products connected to it.
To avoid potential hazards use the device as specified by this user’s guide only.

◆ To Avoid Fire or Personal Injury

◆ Use Proper Power Cord. Use only the power cord specified for this product and certified for the country of use.

◆ Connect and Disconnect Properly. Do not connect or disconnect probes or test leads while they are connected to a voltage source.

◆ Connect and Disconnect Properly. Connect the probe output to the measurement device before connecting the probe to the circuit under test. Disconnect the probe input and the probe reference lead from the circuit under test before disconnecting the probe from the measurement device.

◆ Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

◆ Use Proper Probe. To avoid shock hazard, use a properly rated probe for your measurement.

◆ Avoid Circuit or Wire Exposure. Do not touch exposed connections and components when power is on.

◆ Do Not Operate With Suspected Failures. If suspected damage occurs with the device, have it inspected by qualified service personnel before further operations.

◆ Provide Proper Ventilation. Refer to the installation instructions for proper ventilation of the device.

◆ Do not operate in Wet/Damp Conditions.

◆ Do not operate in an Explosive Atmosphere.

◆ Keep Product Surfaces Clean and Dry.
Chapter 1 Getting Start

The oscilloscope is small, lightweight, no external power required, portable oscilloscopes! The oscilloscopes is ideal for production test, research and design and all of the applications involving analog circuits test and troubleshooting, as well as education and training.

In addition to the list of general features on the next page, this chapter describes how to do the following tasks:

◆ System Requirements
◆ Install Software
◆ General Features
◆ General Check
◆ Probe compensation
◆ Function check
◆ Self calibration
◆ Accessories
System Requirement

To run the oscilloscope software, the needs of computer configuration are as follows:

Minimum System Requirements
Operating System
Window 2000/XP/VISTA/7

Processor
Upwards of 1.00G processor

Memory
128M byte

Disk Space
500M disk free space

Screen resolution
800 x 600

Recommended Configuration
Windows XP SP2 System
2.4G Processor
512M Byte Memory
80G Disk Space
1024 x 768 or 1280 x 1024 resolution
DPI Setting: Normal Size (96DPI)
Install Software

Caution: You must install the software before using the oscilloscope.

1. While in Windows, insert the installation CD into the CD-ROM drive.

2. The installation should start up automatically. Otherwise in Windows Explorer, switch to the CD-ROM drive and run Setup.exe.

3. The software installation is started. Click 'Next' to continue.

4. Choose a destination directory. Click 'Next' to continue.
5. Check the setup information. Click Next to start copying of files.

6. This Status dialog is displayed during copying of files.
7. Updating Your System Configuration.

7.

8. The installation is complete.
Install Driver

1. Connect the A-Type Plug of USB cable to your PC’S USB port.

2. Connect the B-Type Plug of USB cable to Hantek 6022BE’S USB port.

3. New hardware is found.

4. New hardware search wizard starts.
5. New hardware search wizard starts to search the driver.

6. New hardware wizard installs “Hantek 6022BE DRIVER”.
7. The wizard has finished installing for “Hantek 6022BE DRIVER”.

The User’s Manual
General Features

Product features:
◆ Dual Channel, Bandwidth: 48MSa/s
◆ Maximum real-time sample rate: 1Mbyte/channel
◆ Automatic setup for ease of use (AUTOSET);
◆ 20 Automatic measurements;
◆ Automatic cursor tracking measurements;
◆ waveform storage;
◆ User selectable fast offset calibration;
◆ Add, Subtract, Multiply and Division Mathematic Functions;
◆ Adjustable waveform intensity, more effective waveform view;
◆ User interface in several user-selectable languages;

Function Check

Perform this functional check to verify that your oscilloscope is operating correctly.

◆ Connect the oscilloscope
 You should connect the A-Type Plug of USB cable to your PC USB port and connect the B-Type Plug of USB cable to oscilloscope USB port.
Input a signal to a channel of the oscilloscope
The oscilloscope is equipped with dual channels plus external trigger.

Please input signal in the following steps:

1. Set the attenuation switch on the probe as 10X and connect the probe on the oscilloscope with CH1. Aim the slot in the probe connector at the faucet on BNC of CH1 and insert, then, turn right to lock the probe. Finally, attach the tip of probe and ground nip to the Connector of Probe compensator.

2. Set the CH1 probe attenuation of the oscilloscope to X10. (The default is X1).

3. Attach the tip of probe and ground nip to the Connector of Probe compensator. Click the button. A square wave will be displayed within a several seconds. (Approximately 1 kHz, 2V, peak- to- peak). Inspect CH2 with the same method.

4. Repeat steps 2 and 3
Probe Compensation

Perform this function to match the characteristics of the probe and the channel input. This should be performed whenever attaching a probe to any input channel at the first time.

- From the "Probe" menu, select attenuation to 1:10. Set the switch to "X10" on the probe and connect it to CH1 of the oscilloscope. When using the probe hook-tip, insert the tip onto the probe firmly to ensure a proper connection.

- Attach the probe tip to the Probe Compensator and the reference lead to the ground connector, select CH1, and then press the "AUTOSET" button into the menu or the toolbar.

- Check the shape of the displayed waveform.

![Correctly Compensated](image)

![Over compensated](image)
Under Compensated

■ If necessary, use a non-metallic tool to adjust the trimmer capacitor of the probe for the fattest square wave being displayed on the oscilloscope.

![probe diagram]

■ Repeat if necessary.

WARNING: To avoid electric shock while using the probe, be sure the perfection of the insulated cable, and do not touch the metallic portions of the probe head while it is connected with a voltage source.

Self Calibration

The self calibration routine lets you optimize the oscilloscope signal path for maximum measurement accuracy. You can run the routine at any time but you should always run the routine if the ambient temperature changes by 5°C or more. For accurate calibration, power on the oscilloscope and wait twenty minutes to ensure it is warmed up. To compensate the signal path, disconnect any probes or cables from the input connectors. Then, access the “**Menu -> Utility -> Calibration**” option and follow the directions on the screen. The self calibration routine takes about several minutes.

Accessories

All the accessories listed below are standard accessories for the oscilloscope:

- Probe×2 (1.5m), 1:1, (10:1) Passive Probes
- A User’s Guide
- An USB Cable
- A PC software of the oscilloscope
Chapter 2 Operating Basics

◆ The User’s Interface
◆ The Menu System
◆ The Vertical System
◆ The Horizontal System
◆ The Trigger System
The User’s Interface

Click the software icon on the desk after you finished the software setting and equipment connecting. Then a user interface will be showed as follows:

In addition to displaying waveforms, the display area is filled with many details about the waveform and the oscilloscope control settings.

1. **The Main Menu**

 All settings can be found in the main menu.

2. **The Toolbar**
3. **Control Panel**

4. **The Horizontal Panel**
 The user can change Time/Div, format in the panel.

5. **The Vertical Panel**
 The user can turn on/off the CH1/CH2. Also the user can change the CH1/CH2 volt/div, coupling and probe attenuation.

6. **The Trigger Panel**
 In this panel, the user can change the trigger mode, sweep, source and slope.

7. **It shows the system time.**

8. **Sample Rate**

9. **It shows the main time base setting.**

10. **It shows the CH2 information**
 Readouts show the coupling of the channels.
 Readouts show the vertical scale factors of the channels.
 A “B” icon indicates that the channel is bandwidth limited.

11. **It shows the CH1 information**
 Readouts show the coupling of the channels.
 Readouts show the vertical scale factors of the channels.

12. **Output Window**

13. **The markers show the reference points of the displayed waveforms.**
 If there is no marker, the channel is not displayed.

14. **The same as 13.**

15. **Measure Window.**
The Menu System

The Main Menu

1. **File**: Load or Save data, setup

2. **View**: Change the user interface
3. **Cursor:** Cursor measure setup

![Cursor Utility Table]

4. **Display:** The waveform display setup

![Display Cursor Table]

5. **Utility:** Utility setting

![Utility Help Table]

6. **Help:** Turn on help file

![Help Table]

The Vertical System

The following figure shows the vertical system menu. It shows the vertical parameters setting.
1. **CH1**: Leads to the setting of the CH1 parameters
2. **CH2**: Leads to the setting of the CH2 parameters

Use the left mouse button to dragging the channel icon to set the vertical position offset precisely.

Invert: The invert function turns the displayed waveform 180 degrees.

The Horizontal System

The following figure shows the Horizontal System window. It shows the horizontal parameters settings.

1. **Time/DIV**: leads the setting of the time base parameters
2. **Format**: leads the setting of the horizontal format parameters

The time base ranges of the oscilloscope is listed as follows. The horizontal scan speed is from 4ns/div to 1hour/div.

In the "**Format**" menu of the "**Horizontal**" menu, select the display mode to Y-T, X-Y.
The Trigger System

The following figure shows the trigger system control.

Mode: Sets the trigger mode to **Edge** trigger

<table>
<thead>
<tr>
<th>Trigger Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
</tr>
</tbody>
</table>

Sweep: Selects the trigger sweep mode to **AUTO**, **NORMAL** or **SINGLE**

<table>
<thead>
<tr>
<th>Trigger Sweep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trigger Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1, CH2, ALT, EXT, EXT/10</td>
</tr>
</tbody>
</table>

Source: Selects the trigger source to **CH1, CH2, ALT, EXT** or **EXT/10**

<table>
<thead>
<tr>
<th>Trigger Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1</td>
</tr>
</tbody>
</table>

The user can drag the trigger icon to adjust the trigger level and the trigger level will be displayed on the top right corner.
Input Connectors

CH 1/CH 2: Input connectors for waveform display.
EXT.: Input connector for an external trigger source. Use the Trigger Menu to select the Ext. or Ext./10 trigger source.

Other Connector:

GND.: a ground terminal
USB PORT: Connect the B-Type Plug of USB cable to this port.
CAL.: Probe compensation output.
Chapter 3 Understanding Function

◆ Set Oscilloscope
◆ Set Vertical System
◆ Set Horizontal System
◆ Set Trigger System
◆ Utility Function
◆ Measure Signal
◆ Utility Function
◆ Save and Load
◆ Print
Set Oscilloscope

Save Setup
The oscilloscope software saves the current setup before you close the oscilloscope software. The oscilloscope recalls this setup the next time you run the software. You can use the “Save Setup” menu to permanently save up to several different setups.

Load Setup
The oscilloscope can recall the last setup before the oscilloscope software was running, any saved setups, or the factory setup. You can use the “Load Setup” menu to permanently recall a setup.

Factory Setup
The oscilloscope software is set up for normal operation when it is shipped from the factory. This is the factory setup. To recall this setup, push the “Factory Setup” menu.

Set Vertical Systems

The CH1/CH2 control panel in sidebar
The Vertical Menu function:

- **Turn ON/Off:** Turn on/off the channel
- **Volt/DIV:** Select the channel voltage/div
- **Coupling:** Select the channel coupling
- **Probe:** Select the channel probe attenuation

➤ **Change Volt/DIV**

You can click “Volt/Div” in “CH1/CH2” Menu to select the voltage

You can also change “CH1/CH2” voltage in sidebar

You can left click and drag the mouse on the green knob or the yellow knob to change the voltage.
Set Channel Coupling

Click “Coupling” in “Channel” menu

In the sidebar, you can change the channel coupling too.

You can set the coupling to DC, AC or GND. If you set the coupling to DC, it blocks the AC component of the input signal.

Probe Attenuation Setting

Select the attenuation factor for the probe. To check the probe attenuation setting, toggle the probe menu to match the attenuation factor of the probe. This setting remains in effect before you changed again.

Click “Probe” in Channel menu to select the probe attenuation

The probe setting window in the sidebar

Note: The attenuation factor changes the vertical scale of the oscilloscope so that the measurement results reflect the actual voltage levels at the probe tip.

Invert

The invert function turns the displayed waveform 180 degrees, with respect to the ground level. When the oscilloscope is triggered on the inverted signal, the trigger is also inverted.

Click “Invert”
Turn off invert

Turn on invert

The following picture shows the waveform before inversion:
The following picture shows the waveform of inversion:

Set Math

Click \texttt{M} in Toolbar.

The \texttt{MATH} Menu:
◆ **Turn On/Off:** Turn On/Off the MATH Channel.

◆ **Source A/B:** Set the sources of the math channel.

The mathematic functions include addition, subtract, multiply and division for CH1 and CH2.

In this function, use the addition, subtraction, multiplication, division function and FFT to operate and analyze the waveform.

Select source A and B. Then adjust the vertical scale and offset to view the math channel clearly. The mathematic result can be measured by the measure and the cursor.

➢ **The Math Function Display**
Fast Fourier Transform Function

You can use the FFT mode to convert a time-domain signal into its frequency components (spectrum). You can use the FFT mode for the following types of analysis:

◆ Measure harmonic content and distortion in systems
◆ Characterize noise in DC power supplies
◆ Analyze harmonics in power lines
◆ Analyze vibration

To use the FFT mode, you need to click in Toolbar to open the FFT setup window.

The FFT setup window:
You can select the Source channel, Window algorithm, FFT number, and FFT Zoom factor. It displays only one FFT spectrum at a time.

Source:
Selects the channel used as the FFT source

Window:
Selects the FFT window type

Scale:
Selects the vertical scale units

Vert Scale:
Selects the vertical scale

HORI Scale:
Selects the FFT zoom factor

Sets horizontal scale, If the information is more than the quantity displayed to the display window, more information is displayed by using scroll bar.

You can click the **ON/OFF** button to start FFT math, also you can click this button to stop FFT math.

Click “Save” button if you want to save FFT math result. You can save the data into Word file, Excel file or Text file.
Harmonic information window shows the information of Harmonics.

![Harmonics Information](image)

Measurement information window shows the information about measurement of FFT.

![Measurement Information](image)

Measurement Parameters:

\[\sum V_i : \text{Amplitude of the fundamental frequency} \]

\[\sum H_i : \text{Sum of Amplitude of Harmonic (excluding fundamental frequency)} \]

\[\sum N_i : \text{Sum of Noise (excluding fundamental frequency, Harmonics, DC and Nyquist bins)} \]

\[E : \text{Total Number of bins} \]

\[E_h : \text{Total Number of bins of Harmonic} \]
\(F_n \): Total Number of bins of Noise.

SNR (Signal to Noise Ratio): The ratio of the amplitude of the fundamental frequency to the Noise.

\[
SNR = 10 \log_{10} \left[\frac{\sum V_i^2}{\frac{F}{F_n} \sum N_i^2} \right] \quad dB
\]

ENOB (Effective Number of Bits): The number of bits in an ideal converter that would be required to give the same SNR performance.

\[
ENOB = \frac{SNR - 1.76}{6.02} \quad bits
\]

SINAD (Signal to Noise and Distortion): The ratio of the amplitude of fundamental frequency to the Noise, but Noise include Harmonics.

\[
SINAD = 10 \log_{10} \left[\frac{\sum V_i^2}{\frac{F}{F_n} \sum N_i^2 + \sum H_i^2} \right]
\]

THD (Total Harmonic Distortion): The ratio of the RMS sum of the harmonics to the RMS value of the fundamental.

\[
THD = 10 \log_{10} \left[\frac{\sum H_i^2}{\sum V_i^2} \right] \quad dB
\]

SFDR (Spurious Free Dynamic Range): The ratio of the RMS signal amplitude to the RMS value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic.

\[
SFDR = 10 \log_{10} \left[\frac{\sum V_i^2}{\sum H_i^2} \right] \quad dB
\]

Total Power: The RMS value of the sum of all spectral components.

\[
\sum A_i^2 \quad : \text{Sum of Noise excluding DC and Nyquist.}
\]
Total Power = \(10 \log_{10} \left[\sum \lambda_x^2 \right] \) dB

\[THD = 20 \log_{10} \frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + V_5^2}}{V_1}\]

The FFT display Windows:

Set reference

Click \(\text{R}\) in Toolbar to set REF channel.
The Reference Channel Function:

- **Turn On/Off:** Turn on/off the reference channel.
- **Volt/DIV:** Channel the resolution of the reference channel.
- **Reset:** Reset the reference channel vertical position to zero.

The Reference Waveform Display Window:

Note: If you turn on the “Reference” channel, the load file window will appear.

Set Horizontal System

The following figure shows the Horizontal System window. It shows the horizontal parameters settings.

1. **Time/DIV:** leads the setting of the time base parameters
2. **Format**: leads the setting of the horizontal format parameters
 The time base ranges of the oscilloscope is listed as follows. The horizontal scan speed is from 4ns/div to 1hour/div.
 In the “Format” menu of the “Horizontal” menu, select the display mode to Y-T, X-Y.

Set Trigger System

Click “Trigger” in main menu

The trigger determines when the oscilloscope starts to acquire data and display a waveform. When a trigger is set up properly, it can convert unstable displays or blank screens into meaningful waveforms.

If the oscilloscope wants to acquire a waveform, it collects enough data so that it can draw the waveform to the left of the trigger point. The oscilloscope continues to acquire data while waiting for the trigger condition to occur. The oscilloscope continues to acquire enough data so that it can draw the waveform to the right of the trigger point after it detects a trigger.

The **Edge** trigger determines whether the oscilloscope finds the trigger point
on the rising or the falling edge of a signal. Select **Edge** trigger mode to trigger on **Rising** edge or **Falling** edge.

Mode: Select the trigger mode.

<table>
<thead>
<tr>
<th>Trigger Mode</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The oscilloscope only provides edge trigger mode.

Sweep: Set the sweep mode to **Auto**, **Normal** or **Single**.

<table>
<thead>
<tr>
<th>Trigger Sweep</th>
<th>Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td></td>
</tr>
</tbody>
</table>

Auto: Acquire waveform even no trigger occurred
Normal: Acquire waveform when trigger occurred.
Single: Acquire waveform when trigger occurred then stop

Source: You can use the trigger source options to select the signal that the oscilloscope uses as a trigger. The source can be any signal connected to a channel BNC, or to the EXT. BNC.

<table>
<thead>
<tr>
<th>Trigger Source</th>
<th>CH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td></td>
</tr>
</tbody>
</table>

CH1: Select CH1 as trigger signal
CH2: Select CH2 as trigger signal

Slope: Set the slope to **Rising (+)** or **Falling (-)**.

<table>
<thead>
<tr>
<th>Trigger Slope</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rising: Trigger on rising edge
Falling: Trigger on falling edge
Measure Signal

◆ Cursor

◆ Measure

Cursor Menu
Click “Cursor” in main menu

This method allows you to take measurements by moving the cursors.

1. Source

The user can set the source to CH1, CH2, FFT and MATH. But the FFT source can only use Trace type.

When you use cursors, be sure to set the Source to the waveform on the display that you want to measure.

2. Type

There are four types of cursors: Cross, Vertical and Horizontal.

1) Cross
The Cross cursors appear as cross lines on the display and measure the vertical and horizontal parameters.
The **Cross** cursor display window

![Cross Cursor Display](image)

The **Cross** measure result displays on status bar

<table>
<thead>
<tr>
<th>Freq</th>
<th>Time</th>
<th>Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.683 kHz</td>
<td>73.843 μS</td>
<td>3.403 V</td>
</tr>
</tbody>
</table>

2) **Vertical**

The **Vertical** cursors appear as vertical lines on the display and measure the vertical parameters.

The **Vertical** cursor display window
The **Vertical** cursor measure result display on status bar

\[
\text{Freq} = 12.566 \text{ MHz} \quad \text{Time} = 79.566 \mu\text{s}
\]

3) **Horizontal**

The **Horizontal** cursors appear as horizontal lines on the display and measure the horizontal parameters.

The **Horizontal** cursor display window
The Horizontal cursor measure result display on status bar

| Vol.t = 3.502 V |

To acquire and display a signal, please do the steps as follows:
Connect signal to CH1 by using probe
The DSO set the vertical, horizontal, and triggers controls at the best status automatically. Also, you can adjust the controls to meet your measurement to optimize the waveform display.
Measure

Select Channel

<table>
<thead>
<tr>
<th>Measure</th>
<th>CH1</th>
<th>CH2</th>
</tr>
</thead>
</table>

Maximum: Voltage of the absolute maximum level, Measured over the entire waveform

Minimum: Voltage of the absolute minimum level, Measured over the entire waveform

Peak To Peak: Peak-to-peak = Max – Min, Measured over the entire waveform

Top: Voltage of the statistical maximum level, Measured over the entire waveform

Base: Voltage of the statistical minimum level, Measured over the entire waveform

Middle: Voltage of the 50% level from base to top

RMS: The Root Mean Square voltage over the entire waveform

Amplitude: Amp = Base – Top, Measured over the entire waveform

Mean: The arithmetic mean over the entire waveform

Cycle Mean: The arithmetic mean over the first cycle in the waveform
Preshoot: Positive Overshoot = (Max - Top)/Amp x 100 %, Measured over the entire waveform

Overshoot: Negative Overshoot = (Base - Min)/Amp x 100 %, Measured over the entire waveform

Period: Time to take for the first signal cycle to complete in the waveform

Frequency: Reciprocal of the period of the first cycle in the waveform

Rise Time: Time taken from lower threshold to upper threshold

Fall Time: Time taken from upper threshold to lower threshold

Duty Cycle: Positive Duty Cycle = (Positive Pulse Width)/Period x 100%, Measured of the first cycle in waveform

Duty Cycle: Negative Duty Cycle = (Negative Pulse Width)/Period x 100%, Measured of the first cycle in waveform

Pulse Width: Measured of the first positive pulse in the waveform. The time between the 50% amplitude points

Pulse Width: Measured of the first negative pulse in the waveform. The time between the 50% amplitude points

1. To measure the frequency and “Vpp”, you can do these steps as follows:
2. Click the ✡ ✶ Frequency button, the frequency of the signal display on the bottom of the waveform interface.
3. Click the ✡ ✶ Peak to Peak button, the “Vpp” of the signal will also display on the bottom of the waveform interface.
4. To clear the measurement on the waveform interface, click the ✡ button.

The results of measure display in Information output.
The Utility Function

Click the “Menu -> Utility” to get into the “Utility” menu.

The “Utility” Functions:

◆ Calibrate
◆ Factory Setup
◆ Interpolation

Factory Setup

Click “Factory Setup” in “Utility” menu to load default setups

When you click the Factory Setup in Utility menu, the oscilloscope displays the CH1 and CH2 waveforms and removes all other waveforms.

The oscilloscope set up for normal operation when it is shipped from the factory and can be recalled at anytime by user.

The Factory Setup function does not reset Date and time.
Interpolation

Click “Utility->Interpolation”

The **Step** Interpolation

The **Linear** Interpolation
Hantek 6022BE

The Sin(x)/x Interpolation

Note: The default interpolation mode is Sin(x)/x.
The display System

Click “Display” in main menu
The following figure shows the display system menu. It shows the display parameters setting.

- Type
- Grid
- Intensity

Display type

Click “Type” in “Display” menu.
The following figure shows the type parameters setting.

If the Vectors type mode is selected, the waveform will be displayed as following figure.
If the Dots type mode is selected, the waveform will be displayed as following figure.
Display Grid

Click “Display” in main menu

The grid shows:

The grid not shows:
Display Intensity

Click “Display->Intensity” in main menu
The following figure shows the intensity dialog. It shows the display parameters setting.

You can change the grid and waveform color intensity in this dialog.
Save and Load

Click “File” in main menu to save waveform, setups and screen

1. **Save Data**
Save waveform data

2. **Save Setups**
 Save the current oscilloscope setups to file
 Click **File** in main menu to recall saved waveform, setup

<table>
<thead>
<tr>
<th>File</th>
<th>View</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Load Data**
 Load the waveform

2. **Load Setup**
 Load the instrument that had saved

Print

1. Click **Print** in **File** menu to set the printer to print the current waveform.
2. Click the **Print Preview** in **File** menu to get into the Preview window.
In "PrintPreview" window, use the button to change the size of the waveform graph. Click the "Close" button to turn this window off and click the "Print" button to print the report.

Chapter 4 Application Example

- Simple Measurement
- Capturing a Single-Shot Signal
- The Application of the X-Y
- Taking Cursor Measurement
Simple Measurement

To acquire and display a signal, please do the steps as follows:
Connect signal to CH1 by using probe
The DSO set the vertical, horizontal, and triggers controls at the best status automatically. Also, you can adjust the controls to meet your measurement to optimize the waveform display.

1. To measure the frequency and “Vpp”, you can do these steps as follows:
2. Click the button, the frequency of the signal display on the bottom of the waveform interface.
3. Click the button, the “Vpp” of the signal will also display on the bottom of the waveform interface.
4. To clear the measurement on the waveform interface, click the button.
Capturing a Single-Shot Signal

To capture a single event, it needs to gather some pre-test knowledge of the signal in order to set up the trigger level and slope correctly. For example, if the event is derived from 3.3V COMS logic, a trigger level of 1.2 or higher Volts should work on a rising edge.

Do these steps as follows:

1. Set the probe and the channel attenuations to X 10.

2. Set up the trigger in the Trigger Menu, or in the Trigger Setting window.
 1) Adjust the Trigger Mode to Edge.
2) Set the Trigger Sweep to Single.

3) Set the Trigger Source to CH1.

4) Set the Trigger Slope to “+” which means you select the rising edge.

5) Adjust the Volts/Div and the time base in a proper range for the signal.

6) Drag the trigger level sign on the waveform display screen to proper position. It's usually higher a little above the normal level.

7) Click to start capturing. When the trigger conditions are met, data appears on the display representing the data points that the oscilloscope obtained with one acquisition.

The Application of the X-Y Operation

X-Y Plot acts to analyze correlation of data of two channels. Lissajous diagram is displayed in the screen when you use X-Y Plot, which enables to compare frequencies, amplitudes and phases of counterpart waveform against the reference waveform. This makes it possible to compare and analyze frequency, amplitude and phase between input and output.

Do these steps as follows:

1. Set the probe attenuation to “x10”. Set the switch to “x10” on the probes.
2. Connect the CH1 probe to the input of the circuit, and connect the CH2 probe to the output of the circuit.
3. Click ”Autoset” button.
4. Adjust the vertical scale and offset to display approximately the same amplitude signals on each channel.
5. Select X-Y format at Horizontal window. The oscilloscope will displays a Lissajous pattern representing the input and the output characteristics of the circuit.
6. Adjust the scale and offset of the horizontal and vertical to a desirable waveform display. The following picture shows a typical example.
7. Apply the Ellipse Method to observe the phase difference between the two channels.
Signal in X-Y Format:

Instruction of the Ellipse Method
\[\sin \theta = \frac{A}{B} \text{ or } \frac{C}{D} \], where \(\theta \) = phase shift (in degrees) between the two signals.

From the formula above:

\[\theta = \pm \arcsin \left(\frac{A}{B} \right) \text{ or } \pm \arcsin \left(\frac{C}{D} \right) \]

\(\theta \) must be in the range of \((0 \sim \pi/2)\) or \((3\pi/2 \sim 2\pi)\) if the main axis of the ellipse is between I and III quadrant, . If the main axis is at II and IV quadrant, \(\theta \) must be in the range of \((\pi/2 \sim \pi)\) or \((\pi \sim 3\pi/2)\).

Taking Cursor Measurements

Use cursors to make time and amplitude measurements on a waveform quickly.

Measure the Peak Frequency or Time of the First Sine Waveform

Do these steps:

1. Click “Cursor->Source”, select CH1 (select CH2 if you want measure CH2).
2. Click “Cursor->Type”, select Vertical.
4. Drag the mouse button to the point you want to measure.
5. Release the left mouse button, the frequency difference and time difference will be shown at the status bar.
Measure the Frequency and Time:

Read the details showing in the status bar.

Freq = 12.566 Hz Time = 79.566 uS

Measure the Amplitude of the First Waveform Peak of the Waveform
Do these steps:
1. Click “Cursor->Source”, select CH1 (select CH2 if you want measure CH2).
2. Click “Cursor->Type”, select Horizontal.
4. Drag the mouse button to the point you want to measure.
5. Release the left mouse button, the voltage difference will be shown at the status bar.

Measure the Amplitude:
Read the details showing in the status bar.

\[\text{Volt} = 3.502 \, \text{V} \]

Note: Click “Cursor->Type”, select “Cross”, you can measure time and amplitude at one time.
Appendix

◆ Appendix A: Specification
◆ Appendix B: General Maintenance
◆ Appendix C: Services and Support
Appendix A: Specifications

Specifications Table:

<table>
<thead>
<tr>
<th>Input</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Real-time sampling: 48MS/s</td>
</tr>
<tr>
<td>Channels</td>
<td>2 Channels</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>20MHz (-3dB)</td>
</tr>
<tr>
<td>Vertical resolution</td>
<td>8 bits/channel</td>
</tr>
<tr>
<td>Gain range</td>
<td>10mV ~ 5V/div @ x1 probe(10mV, 20mV, 50mV, 100mV, 200mV, 500mV, 1V, 2V, 5V/div 1, 2, 5 sequence)</td>
</tr>
<tr>
<td></td>
<td>100mV ~ 50V/div @ x10 probe</td>
</tr>
<tr>
<td></td>
<td>1V ~ 500V/div @ x100 probe</td>
</tr>
<tr>
<td></td>
<td>10V ~ 5KV/div @ x1000 probe</td>
</tr>
<tr>
<td>Range</td>
<td>8 divisions</td>
</tr>
<tr>
<td>Offset level</td>
<td>+/-4 divisions</td>
</tr>
<tr>
<td>Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Offset increments</td>
<td>0.02 div</td>
</tr>
<tr>
<td>Impedance</td>
<td>1M ohm</td>
</tr>
<tr>
<td>DC accuracy</td>
<td>+/-3%</td>
</tr>
<tr>
<td>Input protection</td>
<td>35Vpk (DC + peak AC < 10 kHz, without external attenuation)</td>
</tr>
<tr>
<td>Display Mode</td>
<td>Y-T, X-Y</td>
</tr>
<tr>
<td>Timebase</td>
<td></td>
</tr>
<tr>
<td>Timebase range</td>
<td>4ns/div ~ 1h/div(4ns, 10ns, 20ns, 40ns, 100ns, 200ns, 400ns, 1us, 2us, 4us, 10us, 20us, 40us, 100us, 200us, 400us, 1ms, 2ms, 4ms, 10ms, 20ms, 40ms, 100ms, 200ms, 400ms, 1s, 2s, 4s, 10s, 20s, 40s, 10m, 20m, 40m, 1h /div 1-2-4 sequence)</td>
</tr>
<tr>
<td>Range</td>
<td>10 divisions</td>
</tr>
<tr>
<td>Buffer Size</td>
<td>Max. 1M samples/channel</td>
</tr>
<tr>
<td>Trigger</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Edge trigger</td>
</tr>
<tr>
<td>Mode</td>
<td>Auto, Normal and Single</td>
</tr>
<tr>
<td>Autoset</td>
<td>Yes</td>
</tr>
<tr>
<td>Range</td>
<td>10 divisions</td>
</tr>
<tr>
<td>Trigger level</td>
<td>+/-4 divisions</td>
</tr>
<tr>
<td>Settablility</td>
<td>0.02 div increments</td>
</tr>
</tbody>
</table>
Appendix B: General Maintenance

General Care

Do not store or leave the oscilloscope where the device will be exposed to direct sunlight for long periods of time.

Caution

To avoid damages to the device or probes, do not expose them to sprays, liquids or solvents.

Cleaning

Inspect the device and probes as often as operating conditions require. Make sure the device disconnect form all power sources.

To clean the exterior surface, perform the following steps:

1. Remove loose dust on the outside of the oscilloscope and probes with a lint-free cloth. Use care to avoid scratching the clear glass display filter.
2. Use a soft cloth dampened with water to clean the device.

Caution

To avoid damages to the surface of the device or probes not use any
abrasive or chemical cleaning agents.

Appendix C: Services and Support

Thank you for choosing HANTEK. Please contact us through the following ways should you have any inquiry regarding our products. We shall do our best to help you.

1. Contact your local HANTEK distributor;
2. Contact your local HANTEK field office;
3. Contact HANTEK headquarters in China.

Headquarters
HANTEK Technologies Co., Ltd
http://www.hantek.net
Address: 5F.NO. 177 zhuzhou road(huite industry city),QingDao,China 266000
Tel: +86-532-88703687 / 88703697
Fax: +86-532-88705691
Email: service@hantek.com.cn

Technical Support
Tel: +86-532-88703687 (ext: 606)
Email: support@hantek.com.cn

Marketing Department
Tel: +86-532-88703687 (ext: 607)
Email: david@hantek.com.cn

Sales Department
Tel: +86-532-88703687 (ext: 605)
E-mail: sales@Hantekins.com