A ADLINK
¥ '

ADL-GPIB

IEEE 488 commands
Function Reference Manual

Manual Rev. 2.00
Revision Date: April 14, 2005
Part No: 50-15043-1000 Recycled Paper

Advance Technologies; Automate the World.

A
'’

ADLINK

TECHNOLOGY INC.

Copyright 2005 ADLINK TECHNOLOGY INC.
All Rights Reserved.

The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of the manufacturer.

Trademarks

Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

A ADLINK
R, '

Getting Service from ADLINK

Customer Satisfaction is top priority for ADLINK Technology Inc.
Please contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.

Web Site: http://www.adlinktech.com

Sales & Service: Service@adlinktech.com

TEL: +886-2-82265877

FAX: +886-2-82265717

Address: 9F, No. 166, Jian Yi Road, Chungho City,

Taipei, 235 Taiwan

Please email or FAX this completed service form for prompt and
satisfactory service.

Company Information

Company/Organization

Contact Person

E-mail Address
Address
Country
TEL FAX:
Web Site

Product Information

Product Model

OS:
Environment M/B: CPU:
Chipset: Bios:

Please give a detailed description of the problem(s):

A ApLINK
W '

A ADLINK
R, '

Table of Contents

1 Using ADL-GPIB FUNCHIONScccooviiiiiiiiiiieee e 1
1.1 The Fundamentals of Building Windows 2000/NT/98 Applica-
tion With ADL-GPIB...........ovvviiiiiiiiieieieieeeeeeeeeeeeeeeevaianns 1

1.2 ADL-GPIB FUNCLIONS OVEIVIEWovvvvvviiiiiieieieieeeeeeeeeeeenenns 4
1.3 Data TYPES ettt 10
2 |EEE 488 Function Reference.......cccooovvieieiiiiiieiieiiiieeees 11
2 T | o T= 1<) G 11
D |] o] o T- R 15
G T | o To- T o2 15
S | o o1 | R 17
2.5 TBCMA oo 18
2.6 DCMAA ceeie i 19
2.7 DCONTIG oo 21
b2 S T | o o [V R 28
2.9 BAMA et 30
b2 O B 1o 7= To | AR 31
2 5 T | o 7= To TR 32
2.2 0DfING oo ———— 34
2,13 0DGLS e 35
2.4 QDISt oo —————— 36
D2 S T | o] 11 [37
206 0DIN oo —————— 39
2 A | o] [0 T 41
DS T 1o o] | R 42
2.19 0BNOLTY cooeeie 43
2.20 0DPA ..o 46
2 T | 1= Vo [47
2,22 MDPCE e 48
2,23 IDPPC e 49
2.24 0D .o ———— 51
S T | o] (o - R 53
2.26 0DIAf . ———— 55
227 DIPP e 57
S T | o] £ o 58
2,29 MBS i 59
DG {0 BT o €1 2 60
D2 3 I | o 1= o 61

Table of Contents i

A
'’

ADLINK

TECHNOLOGY INC.

2.32 DSIE e 62
2.33 IDSIOP ettt 63
2.34 IDEMIO e e 64
2.35 0BG e 66
2.36 IDWAIL......eeviiiiiiiiece e 67
2.37 TDWIT e 69
2.38 IDWITA ... 71
2.39 DWW Lo 73
Multi-Device IEEE 488 Function Reference.................... 75
3L ANSPOIl .. 75
3.2 DEVCIBAI ..ccuuu it 76
3.3 DEVCIBAILIST ... eieeeeeee e 77
3.4 ENAbBIELOCAl.....coceeeeei e 78
3.5 ENAbIEREMOLEccoeevei e 79
IS T T o | I o 80
3.7 FINARQS ..o 81
3.8 PaSSCONIIO ..vvveviiiiieiiii e 82
3.9 PPOIl e 83
3.10 PPOICONTIG tuviiieeiee it 84
3.11 PPOIUNCONTIG..ccccii i 85
3.12 RCVRESPMSH...uiiiiiiiiiiii ettt 86
3.13 ReadStatuUSBYte.........cccciiiiiiiiieie e 87
314 RECEIVE ...ovvitiiiiitce ittt ettt 88
3.15 RECEIVESEIUPD....ccii ittt e e e e e e e s ennes 89
3.6 RESEISYS. ottt 90
BUAT7 SENA et 91
3.18 SENACMAS ...ovvviviiiieei e 92
3.19 SendDataBYLES........cccccvviiiiieiiiee e 93
3.20 SENALIST....civtriitititiciee ettt 94
3.21 SENAIFC ...t 95
3.22 SENALLO ...ttt 96
3.23 SENASEIUP .eevvvieeee e e e 97
3.24 SEIRWLS ...ovttccc e 98
3.25 TESISRQ ..ovitiiiiiiiiiiiiiiieee et 99
.26 TESISYS .uuiiiiiiiiiieie et eeere e 100
G A I 1o To =] SR EREERR 101
3.28 THQQEILISt..cuiiiiiee e e 102
3.29 WaAISRQutiiiiiiiiiiiiieiieeeeeeeeeee e 103

Appendix A: Status COAES.......cceeeeviiiiiiiiiiiiiieeer e 105

Table of Contents

A ADLINK
R, '

Appendix B: Error Codes..........cooovviiiiiiiiiiiiieeieeeeeeee 106

Table of Contents iii

A ADLINK
R, '

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

1-1:
1-2:
1-3:
1-4:
2-1:
2-2:
2-3:
2-4:
2-5:

4-2:

List of Tables

IEEE 488 Device Level Function Groupcc....... 4
IEEE 488 Board Level Function Groupcce...... 6
IEEE 488.2 FUNCLiON Groupccvvveeeviiiiiieeeiiiieeeeens 8
Data TYPES ..o 10
ibask Board Configuration Parameter Options 12
ibask Device Configuration Parameter Options 14
Board Configuration Parameter Options 22
Board Configuration Parameter Options 24
Device Configuration Parameter Options 26
Status COUAESvviiieiiiiiiiee et 105
Error COAesSooveiiiiiiiiiiiiiieee e 106

List of Tables

A ADLINK
R, '

List of Figures

Figure 1-1: Open Project dialog bOXcccvvvveiiiiiiiiiiiiiiiee 2

List of Figures v

A ADLINK
W '

A ADLINK
R, '

1 Using ADL-GPIB Functions

ADL-GPIB is a software driver for ADLINK GPIB interface.

1.1 The Fundamentals of Building Windows 2000/
NT/98 Application with ADL-GPIB

Creating a Windows 2000/NT/98 ADL-GPIB Application
Using Microsoft Visual C/C++

To create a data acquisition application using ADL-GPIB and
Microsoft Visual C/C++, follow these steps after entering Visual C/
C++:

1. Open the project in which you want to use ADL-GPIB.
This can be a new or existing project

2. Include header file ADGPIB.H in the C/C++ source files
that call ADL-GPIB functions. ADGPIB.H contains all the
function declarations and constants that you can use to
develop your data acquisition application. Incorporate
the following statement in your code to include the
header file.

#include “ADGPIB.H”
3. Build your application.

Setting the appropriate compile and link options, then build
your application by selecting the Build command from Build
menu (Visual C/C++ 4.0). Remember to link ADL-GPIB’s
import library GPIB-32.LIB.

Creating a Windows 2000/NT/98 ADL-GPIB Application
Using Microsoft Visual Basic

To create a data acquisition application using ADL-GPIB and
Visual Basic, follow these steps after entering Visual Basic:

1. Open the project in which you want to use ADL-GPIB.
This can be a new or existing project

Open a new project by selecting the New Project command
from the File menu. If it is an existing project, open it by select-

Using ADL-GPIB Functions 1

A ADLINK
R, '

ing the Open Project command from the File menu. Then the
Open Project dialog box appears.

Open Project [2]

Loak in; I £ Microsoft Visual Basic j ﬁl Boa
bitraps [report Autoa2ld.vbp
cligvr 32 zamples
he 3 zetup
icons 3 zetupkit
include 1 %BOnline
metafile 3 wWinapi

File name: || Open I
Files of type: [Project Files[* Vbp:" Mak) =] T |

Figure 1-1: Open Project dialog box

Chang directory to the place the project file located. Double-
click the project file name in the File Name list to load the
project.

2. Add file ADGPIB.BAS into the project if this file is not
included in the project. This file contains all the proce-
dure declarations and constants that you can use to
develop your data acquisition application.

3. Design the interface for the application.

To design the interface, you place the desired elements, such
as command button, list box, text box, etc., on the Visual Basic
form. These are standard controls from the Visual Basic Tool-
box. To place a control on a form, you just move pointer to Tool-
box, select the desired control and draw it on the form. Or you
can double-click the control icon in the Toolbox to place it on
the form.

4. Set properties for the controls.

2 Using ADL-GPIB Functions

A ADLINK
R, '

To view the property list, click the desired control and then
choose the Properties command from the View menu or press

F4, or you can also click the Properties button on the tool-
bar.
5. Write the event code.

The event code defines the action you want to perform when
an event occurs. To write the event code, double-click the
desired control or form to view the code module and then add
code you want. You can call the functions that declared in the
file ADGPIB.BAS to perform data acquisition operations.

6. Run your application.
To run the application, choose Start from the Run menu, or

click the Start icon E on the toolbar (you can also press F5).

7. Distribute your application.

Once you have finished a project, you can save the application
as an executable (.EXE) file by using the Make EXE File com-
mand on the File menu. And once you have saved your appli-
cation as an executable file, you've ready to distribute it. When
you distribute your application, remember also to include the
ADL-GPIB’s DLL and driver files.

Using ADL-GPIB Functions 3

A ADLINK
R, '

1.2 ADL-GPIB Functions Overview

ADL-GPIB functions are grouped to the following classes:

IEEE 488 Device Level Function Group

Function Description
ibask | Return the current setting value of the selected configuration item
ibbna | Set the access board of a device
ibclr Clear a specific device
ibconfig | Set the software configuration parameters
ibdev | Open and initialize a device
ibeos | Configure the end-of-string (EOS) termination mode or character
ibeot Enable or disable the a_lutomatic assertion of the GPIB EOI line atthe
end of write I/O operations
ibln Check for the presence of a device on the bus
ibloc | Go to local
ibonl Place the device online or offline
ibpad | Set the primary address
ibpct | Pass control to another GPIB device with Controller capability
ibppc | Configure Parallel polling
ibrd Read data from a device into a buffer
ibrda | Read data asynchronously from a device into a buffer
ibrdf | Read data from a device into a file
ibrdi Read data from a device into a buffer
ibrdia | Read data asynchronously from a device into a buffer
ibrpp | Perform a parallel poll
ibrsp | Perform a serial poll
ibsad | Set or disable the secondary address
ibstop | Abort asynchronous 1/O operation
ibtmo | Set or disable the 1/0 timeout period
ibtrg Trigger selected device
ibwait | Wait for GPIB events
Table 1-1: IEEE 488 Device Level Function Group
4 Using ADL-GPIB Functions

A
'’

ADLINK

TECHNOLOGY INC.

Function Description
ibwrt | Write data to a device from a buffer
ibwrta | Write data asynchronously to a device from a buffer
ibwrtf | Write data to a device from a file

Table 1-1: IEEE 488 Device Level Function Group

Using ADL-GPIB Functions

A ADLINK
R, '

IEEE 488 Board Level Function Group

Function Purpose
ibask | Return the current setting value of the selected configuration item
ibcac | Become Active Controller state
ibcmd | Send GPIB commands
ibcmda | Send GPIB commands asynchronously
ibconfig | Set the software configuration parameters
ibdma |Enable or disable DMA
ibeos | Configure the end-of-string (EOS) termination mode or character
ibeot Enable or disable the a_utomatic assertion of the GPIB EOlI line atthe
end of write 1/O operations
ibfind | Open and initialize a GPIB board
ibgts | Go from Active Controller state to Standby Controller state
ibist Set or clear the board individual status bit for parallel polls
iblines | Return the status of the GPIB control lines
ibin Check for the presence of a device on the bus
ibloc | Go to local
ibonl | Place the interface board online or offline
ibpad | Set the primary address
ibppc | Configure Parallel polling
ibrd Read data from a device into a buffer
ibrda | Read data asynchronously from a device into a buffer
ibrdf | Read data from a device into a file
ibrdi Read data from a device into a buffer
ibrdia | Read data asynchronously from a device into a buffer
ibrpp | Perform a parallel poll
ibrsc | Request or release system control
ibrsv | Request service and change the serial poll status byte
ibsad | Set or disable the secondary address
ibsic | Assert interface clear
ibsre | Set or clear the Remote Enable (REN) line
ibstop | Abort asynchronous I/O operation
Table 1-2: IEEE 488 Board Level Function Group
6 Using ADL-GPIB Functions

A ADLINK
R, '

Function Purpose

ibtmo | Set or disable the 1/O timeout period

ibwait | Wait for GPIB events

ibwrt | Write data to a device from a user buffer

ibwrta | Write data asynchronously to a device from a user buffer

ibwrtf | Write data to a device from a file

Table 1-2: IEEE 488 Board Level Function Group

Using ADL-GPIB Functions 7

ADLINK

TECHNOLOGY INC.

IEEE 488.2 Function Group

Routine Purpose
AllSpoll Serial polling all devices
DevClear Clear a single device

DevClearList

Clear multiple devices

EnableLocal

Enable operations from the front panel of devices (leave
remote programming mode)

EnableRemote

Enable remote GPIB programming for devices

FindLstn Find listening devices on the GPIB
FindRQS Determine which device is requesting service
PassControl | Pass control to another device with Controller capability
PPoll Perform a parallel poll on the GPIB
PPollConfig | Configure a device for parallel polls
PPollUnconfig | Unconfigure devices for parallel polls
RcvRespMsg | Read data bytes from a device addressed to talk
ReadStatusByte | Conduct serial polling single device
Receive Read data bytes from a device
ReceiveSetup A.ddress a device to be a Talker and the interface board to bea
Listener
ResetSys Reset and initialize devices
Send Send data bytes to a device
SendCmds Send GPIB command bytes
SendDataBytes | Send data bytes to devices addressed to listen
SendIFC Reset the GPIB by sending interface clear
SendList Send data bytes to multiple GPIB devices
SendLLO Send the Local Lockout (LLO) message to all devices
SendSetup [S)t; :é)y(tnls:ices to receive data in preparation for Send-
SetRWLS Place devices in remote with lockout state
TestSRQ E)Seé(ggr}ii:z the current state of the GPIB Service Request
TestSys Trigger a devices to conduct self-tests
Trigger Trigger a device

Table 1-3: IEEE 488.2 Function Group

Using ADL-GPIB Functions

A ADLINK
R, '

Routine Purpose
TriggerList Trigger multiple devices
WaitSRQ Wait until a device asserts the GPIB Service Request (SRQ)

line

Table 1-3: IEEE 488.2 Function Group

Using ADL-GPIB Functions

A ADLINK
R, '

1.3 Data Types

We defined some data types in ADGPIB.H. These data types are
used by ADL-GPIB library. We suggest you to use these data
types in your application programs. The following table shows the
data type names, their ranges and the corresponding data types in
C/C++, Visual Basic and Delphi (We didn’t define these data types
in ADGPIB.BAS and ADGPIB.PAS. Here they are just listed for

reference)
Type
Type Name Description Range C/C++(for 32-bit Visual Basi Pascal
compiler) Isual basic (Delphi)
us 8-bit ASCII character 0to 255 unsigned char Byte Byte
116 16-bit signed integer -32768 to 32767 short Integer Smallint
Not
supported
by BASIC,
U16 Addr4882_t | 16-bit unsigned integer 0 to 65535 unsigned short use the Word
signed
integer (116)
instead
132 ssize_t 32-bit signed integer -2147483648 to 2147483647 long Long Longint
Not
supported
by BASIC,
U32 size_t 32-bit unsigned integer 0 to 4294967295 unsigned long use the Cardinal
signed long
integer (132)
instead
F32 32-bit single-precision | 3 44583¢38 10 3.402823E38 float Single | Single
floating-point
64-bit double-precision | -1.797683134862315E308 to
Fe4 floating-point 1.797683134862315E309 double Double | Double
Table 1-4: Data Types
10 Using ADL-GPIB Functions

2

A ADLINK
R, '

IEEE 488 Function Reference
2.1 ibask

@ Description
Return the current setting value of the selected configuration item.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

int ibask (int ud, int option, int *value)
Visual Basic

ilask (Byval ud As Integer, ByVal opt As Integer,
rval As Integer) As Integer

or

call ibask (Byval ud As Integer, ByVal opt As
Integer, rval As Integer)

@ Parameter
ud: board or device unit descriptor

option: the configuration item whose value is being returned.
The valid option items are listed in the table 2.1 and 2.2.

value: returns current value of the specified configuration item.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, ECAP, EDVR

IEEE 488 Function Reference 11

A ADLINK
R, '

Options Options

(Constants) | (Values) Returned Information

ibaPAD 0x0001 | The current primary address of the board

ibaSAD 0x0002 | The current secondary address of the board.

ibaTMO 0x0003 | The current I/O timeout of the board.

0: The GPIB EOI line is not asserted at the end of a
ibaEOT 0x0004 | write operation.

1: EOIl is asserted at the end of a write.

The current parallel poll configuration settings the

ibaPPC 0x0005 board

) 0: Automatic serial polling is disabled.
ibaAUTOPOLL | 0x0007

1: Automatic serial polling is enabled.
. 0: The CIC protocol is disabled.
ibaCICPROT | 0x0008 -
1: The CIC protocol is enabled.
. 0: Interrupts are not enabled.
ibalRQ 0x0009
1: Interrupts are enabled.
. 0: The board is not the GPIB SystemController.
ibaSC 0x000A 1

: The board is the System Controller..

0: The board does not automatically assert the GPIB
REN line when it becomes the System Controller.

ibaSRE 0x000B - -
1: The board automatically asserts REN when it

becomes the System Controller.

0: The EOS character is ignored during read opera-

. tions.
ibaEOSTId 0x000C

1: Read operation is terminated by the EOS charac-
ter.

0: The EOI line is not asserted when the EOS char-

i acter is sent during a write operation.
ibaEOSwrt 0x000D

1: The EOI line is asserted when the EOS character
is sent during a write operation.

. 0: A 7-bit compare is used for all EOS comparisons.
ibaEOScmp | Ox000E

1: An 8-bit compare is used for all EOS comparisons.

ibaEOSchar 0x000F | The current EOS character of the board.

Table 2-1: ibask Board Configuration Parameter Options

12 IEEE 488 Function Reference

ADLINK

—
—
H TECHNOLOGY INC.
®

Options
(Constants)

Options
(Values)

Returned Information

ibaPP2

0x0010

0: The board is in PP1 mode-remote parallel poll
configuration.

1: The board is in PP2 mode—local parallel poll con-
figuration.

ibaTIMING

0x0011

The current bus timing of the board.

1: Normal timing (T1 delay of 2 ps.)

2: High speed timing (T1 delay of 500 ns.)

: Very high speed timing (T1 delay of 350 ns.)

ibaDMA

0x0012

: The board will not use DMA for GPIB transfers.

: The board will use DMA for GPIB transfers

ibaSpollBit

0x0016

: The SPOLL bit of ibsta is disabled.

PO OlW

: The SPOLL bit of ibsta is enabled.

ibaSendLLO

0x0017

0: The GPIB LLO command is not sent when a
device is put online-ibfind or ibdev.

1: The LLO command is sent.

ibaPPollTime

0x0019

0: The board uses the standard duration (2 ps) when
conducting a parallel poll.

1to 17 = The board uses a variable length duration
when conducting a parallel poll. The duration values
correspond to the ibtmo timing values.

ibaEndBitls-
Normal

alox001
A

0: The END bit of ibsta is set only when EOI or EOI
plus the EOS character is received. If the EOS char-
acter is received without EOI, the END bit is not set.

1: The END bit is set whenever EOI, EOS, or EOI
plus EOS is received.

ibaist

0x0020

The individual status (ist) bit of the board.

ibaRsv

0x0021

The current serial poll status byte of the board.

Table 2-1: ibask Board Configuration Parameter Options

IEEE 488 Function Reference 13

A ADLINK
R, '

Options Options

(Constants) | (Values) Returned Information

ibaPAD 0x0001 | The current primary address of the device.

ibaSAD 0x0002 | The current secondary address of the device.

ibaTMO 0x0003 | The current I/O timeout of the device.

0: The GPIB EOI line is not asserted at the end of a
ibaEOT 0x0004 | write operation.

1: EOIl is asserted at the end of a write.

0: No unnecessary addressing is performed between

. device-level read and write operations.
ibaREADDR | 0x0006

1: Addressing is always performed before a device-
level read or write operation.

0: The EOS character is ignored during read opera-
tions.

ibaEOSIrd 0x000C — -
1: Read operation is terminated by the EOS charac-

ter.

0: The EOI line is not asserted when the EOS char-

) acter is sent during a write operation.
ibaEOSwrt 0x000D

1: The EOI line is asserted when the EOS character
is sent during a write operation.

. 0: A 7-bit compare is used for all EOS comparisons.
ibaEOScmp | 0x000E

1: An 8-bit compare is used for all EOS comparisons.

ibaEOSchar Ox000F | The current EOS character of the board.

The length of time the driver waits for a serial poll
ibaSPollTime | 0x0018 |response when polling the device. The length of
time is represented by the ibtmo timing values.

0: The END bit of ibsta is set only when EOI or EOI
plus the EOS character is received. If the EOS char-

ibaEndBitls- alOx001A | acter is received without EOI, the END bit is not set.

Normal

1: The END bit is set whenever EOI, EQOS, or EOI
plus EOS is received.

The index of the GPIB access board used by the

ibaBNA 0x0200 | .) .
given device descriptor.

Table 2-2: ibask Device Configuration Parameter Options

14 IEEE 488 Function Reference

A ADLINK
R, '

2.2 ibbna

@ Description

Assign the access board of the specified device.

@ Support Level

Device level

@ Syntax
Microsoft C/C++ and Borland C++

int ibbna(int ud, char *board_name)
Visual Basic

ilbna (Byval ud As Integer, ByVal udname As
String) As Integer

or

call ibbna(Byval ud As Integer, ByVal udname As
String)

@ Parameter

ud: device unit descriptor
board_name: the name of the access board, e.g. gpib0.

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EARG, ECAP, EDVR, EOIP, ENEB

2.3 ibcac

@ Description

Set the specified gpib board to be active controller by asserting
ATN. Before you call ibcac, the GPIB board must already be CIC.
To make the board CIC, use the ibsic function.

IEEE 488 Function Reference 15

A
'’

ADLINK

TECHNOLOGY INC.

The board can take control synchronously or asynchronously. To
take control synchronously, the GPIB board attempts to assert the
ATN signal without corrupting transferred data. If this is not possi-
ble, the board takes control asynchronously. To take control asyn-
chronously, the GPIB board asserts ATN immediately without
regard for any data transfer currently in progress.

@ Support Level
board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibcac(int ud, int synchronous)
Visual Basic

ilcac(ByVval ud As Integer, ByVal v As Integer) As

Integer

or

call ibcac(Byval ud As Integer, ByVal v As
Integer)

@ Parameter

ud: board unit descriptor

V: takes control asynchronously or synchronously
0: asynchronously

1: synchronously

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, ECIC, EDVR, EOIP, ENEB

16

IEEE 488 Function Reference

A ADLINK
R, '

2.4 ibclr

@ Description

Send the GPIB Selected Device Clear (SDC) message to the
specified device.

@ Support Level

Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibclr(int ud)
Visual Basic

ilclr(Byval ud As Integer) As Integer
or
call ibclr(Byval ud As Integer)

@ Parameter

ud: device unit descriptor

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB

IEEE 488 Function Reference 17

A
'’

ADLINK

TECHNOLOGY INC.

2.5 ibcmd

@ Description

Send GPIB commands. Command bytes are used to configure the
state of the GPIB. They are not used to send instructions to GPIB
devices. Use ibwrt to send device-specific instructions. The num-
ber of command bytes transferred is returned in the global variable
ibentl.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibcmd(int ud, const void *cmd, long cnt)
Visual Basic

ilcmd(ByVval ud As Integer, ByVal buf As String,
ByvVal cnt As Long) As Integer

or

call ibcmd(Byval ud As Integer, ByVval buf As
String)

@ Parameter
ud: device unit descriptor

buf: the buffer contains command string to sent
cnt: number of command bytes to sent

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, ECIC, EDVR, EOIP, ENEB, EABO, ENOL

18

IEEE 488 Function Reference

A ADLINK
R, '

2.6 ibcmda

@ Description

Send GPIB commands asynchronously. Command bytes are used
to configure the state of the GPIB. They are not used to send
instructions to GPIB devices. Use ibwrt to send device-specific
instructions. The number of command bytes transferred is
returned in the global variable ibcntl.

The asynchronous 1/O calls (ibcmda, ibrda, ibwrta) are designed
so that applications can perform other non-GPIB operations while
the 1/O is in progress. Once the asynchronous I/O has begun, fur-
ther GPIB calls are strictly limited. Any calls that would interfere
with the I/O in progress are not allowed, the driver returns EOIP in
this case.

Once the /O is complete, the application must resynchronize with
the adlgpib driver.

Resynchronization is accomplished by using one of the following
three functions:

ibwait If the returned ibsta mask has the CMPL bit set, the driver
and application are resynchronized.

ibnotify If the ibsta value passed to the ibnotify callback contains
CMPL, the driver and application are resynchronized.

ibstop The 1/O is canceled; the driver and application are resyn-
chronized.

ibonl The I/O is canceled and the interface is reset; the driver and
application are resynchronized.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibcmda (int ud, const void *cmd, long cnt)

IEEE 488 Function Reference 19

A ADLINK
R, '

Visual Basic

Ilcmda (ByVal ud As Integer, ByVal buf As String,
ByVal cnt As Long) As Integer

or

call ibcmda (Byval ud As Integer, ByVal buf As
String)

@ Parameter

ud: device unit descriptor

buf: the buffer contains command string to sent
cnt: number of command bytes to sent

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, ECIC, EDVR, EOIP, ENEB, EABO, ENOL

20 IEEE 488 Function Reference

A ADLINK
R, '

2.7 ibconfig

@ Description
Set the setting value of the selected configuration item.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++
Int ibconfig(int ud, int option, int value)
Visual Basic
ilconfig(ByVval ud As Integer, ByVal opt As
Integer, ByVal v As Integer) As Integer
or
call ibconfig(ByVal ud As Integer, ByVal opt As
Integer, ByVal v As Integer)

@ Parameter

ud: board or device unit descriptor

opt: the configuration item which wish to be changed. The valid
option items are listed in the following tables.

IEEE 488 Function Reference 21

A ADLINK
R, '

Options Options

(Constants) | (Values) e Ve

ibcPAD 0x0001 | Set the primary address of the board.

ibcSAD 0x0002 | Set the secondary address of the board.

ibcTMO 0x0003 | Set the I/O timeout limit of the board.

ibcEOT 0x0004 | Set the data termination mode for write operations.
ibcPPC 0x0005 | Configures the board for parallel polls. Default: zero

0: Disable automatic serial polling.

ibcAUTOPOLL | 0x0007 - - -
1: Enable automatic serial polling.

Request or release system control. Identical to

ibcSC Ox000A |.
ibrsc.

Assert the Remote Enable (REN) line. Identical to
ibcSRE 0x000B |ibsre.

Default: zero.

0: Ignore EOS character during read operations.

ibcEOSrd 0x000C | 1: Terminate reads when the EOS character is read
match occurs.

0: Do not assert EOI with the EOS character during
write operations.

ibcEOSwrt 0x000D - - -
1: Assert EOI with the EOS character during writes

operations.

0: Use 7 hits for the EOS character comparison.

ibcEOScmp 0x000E - -
1: Use 8 bits for the EOS character comparison.

ibcEOSchar | Ox000E Any 8-bit value. This byte becomes the new EOS

character.
0: PP1 mode-remote parallel poll configuration.
ibcPP2 0x0010 |1: PP2 mode-local parallel poll configuration.

Default: zero.

1. Normal timing (T1 delay of 2 us.)

2: High speed timing (T1 delay of 500 ns.)

ibcTIMING 0x0011 | 3: Very high speed timing (T1 delay of 350 ns.).

The T1 delay is the GPIB source handshake timing.

Default : 3

Table 2-3: Board Configuration Parameter Options

22 IEEE 488 Function Reference

A ADLINK
R, '

Options Options

(Constants) | (Values) Lzl velnes

0 = No byte swapping.
1 = Swap pairs of bytes during a read. Default: zero.

ibcReadAdjust | 0x0013

0 = No byte swapping.
ibcWriteAdjust | 0x0014 |1 = Swap pairs of bytes during a write.
Default: zero.

0: The SPOLL bit of ibsta is disabled.
ibcSpollBit 0x0016 |1: The SPOLL hit of ibsta is enabled.
Default: zero.

0: Do not send LLO when putting a device online —
ibfind or ibdev.

ibcSendLLO | 0x0017 |1: Send LLO when putting a device online—ibfind or
ibdev.

Default: zero.

0: Use the standard duration (2 ps) when conducting
a parallel poll.
1to 17: Use a variable length duration when con-

ducting a parallel poll. The duration represented by 1
to 17 corresponds to the ibtmo values.

ibcPPollTime | 0x0019

Default: zero.

0: Do not set the END bit of ibsta when an EOS
match occurs during a read.

IbcEndBitls- | 5 5114 [1: Set the END bit of ibsta when an EOS match
Normal .
occurs during a read.
Default: 1.
ibclst 0x0020 | Sets the individual status (ist) bit of the board.
. Sets the serial poll status byte of the board.
ibcRsv 0x0021

Default: zero.

Table 2-3: Board Configuration Parameter Options

IEEE 488 Function Reference 23

A ADLINK
R, '

Options Options
(Constants) | (Values) e Ve
ibcPAD 0x0001 | Set the primary address of the board.
ibcSAD 0x0002 | Set the secondary address of the board.
ibcTMO 0x0003 | Set the 1/O timeout limit of the board.
ibcEOT 0x0004 | Set the data termination mode for write operations.
0: No unnecessary readdressing is performed
between device-level reads and writes.
IbcREADDR | 0x0006 — -
1: Addressing is always performed before a device-
level read or write.
0: Ignore EOS character during read operations.
ibcEOSrd 0x000C | 1: Terminate reads when the EOS character is read
match occurs.
0: Do not assert EOI with the EOS character during
) write operations.
ibcEOSwrt 0x000D - - X
1: Assert EOI with the EOS character during writes
operations.
. 0: Use 7 bits for the EOS character comparison.
ibcEOScmp 0x000E - -
1: Use 8 bits for the EOS character comparison.
ibcEOSchar | Ox000F Any 8-bit value. This byte becomes the new EOS
character.
0to 17 : Sets the length of time the driver waits for a
.) serial poll response byte when polling the given
ibcSPollTime | 0x0018 device. The length of time represented by 0 to 17
corresponds to the ibtmo values. Default: 11.
0: Do not set the END bit of ibsta when an EOS
i itls- match occurs during a read.
ibcEndBitls OX001A . 9 .
Normal 1: Set the END bit of ibsta when an EOS match
occurs during a read. Default: 1.

Table 2-4: Device Configuration Parameter Options

value: the value wish to be changed to the specified configura-

tion item.

@ Return Code

The value of ibsta.

24

IEEE 488 Function Reference

A ADLINK
R, '

@ Possiable Error Codes
EARG, ECAP, EDVR, EOIP

IEEE 488 Function Reference 25

A ADLINK
R, '

2.8 ibdev

@ Description

Open and initialize a device descriptor. If ibdev is unable to get a
valid device descriptor, a -1 is returned; the ERR bit is set in ibsta
and iberr contains EDVR.

@ Support Level

Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibdev(int board_index, int pad, int sad, int
timo, int send_eoi, int eosmode)
Visual Basic

ildev(Byval bdid As Integer, ByVal pad As
Integer, ByVal sad As Integer, ByVval tmo As
Integer, ByVal eot As Integer, ByVal eos As
Integer) As Integer

or

call ibdev(Byval bdid As Integer, ByVal pad As
Integer, ByVal sad As Integer, ByVal tmo As
Integer, ByVal eot As Integer, ByVal eos As
Integer, ud As Integer)

@ Parameter

board_index :the index of the access board for the device
pad: the primary GPIB address of the device

sad: the second GPIB address of the device

tmo: the 1/0O timeout value

eot: enable or disable EOI mode of the devcie

eos: configure EOS character and EOS modes of the devcie

@ Return Code

The device descriptor or -1.

26 IEEE 488 Function Reference

A ADLINK
R, '

@ Possiable Error Codes
EARG, EDVR, ENEB,

IEEE 488 Function Reference 27

A ADLINK
R, '

2.9 ibdma

@ Description

This fucntion is not supported in adlgpib.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibdma(int ud, int v)
Visual Basic

ildma(ByVval ud As Integer, ByVal v As Integer) As

Integer

or

call ibdma(Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the board descriptor
dma: enable or disable dma mode

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, ECAP, EDVR, ENEB, EOIP

28 IEEE 488 Function Reference

A ADLINK
R, '

2.10 ibeot

@ Description

Enable or disable the automatic assertion of the GPIB EOI line at
the end of write I/O operations.

If EOT mode is enabled, EOI is asserted when the last byte of a
GPIB write is sent; otherwise, nothing occurs when the last byte is
sent.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibeot (int ud, int v)
Visual Basic

Ileot (ByVal ud As Integer, ByVal v As Integer)
As Integer

or

call ibeot (Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the board or device descriptor
v: enable or disable eot mode

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EDVR, ENEB, EOIP

IEEE 488 Function Reference 29

A ADLINK
R, '

2.11 ibeos

@ Description
Configure the end-of-string (EOS) termination mode or character.

Note: Defining an EOS byte does not cause the driver to automat-
ically send that byte at the end of write I/O operations. Your
application is responsible for placing the EOS byte at the end
of the data strings that it defines.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibeot (int ud, int v)
Visual Basic

ileos (Byval ud As Integer, ByVval v As Integer)
As Integer

or

call ibeos (Byval ud As Integer, ByvVal v As
Integer)

@ Parameter
ud: the board or device descriptor

v: EOS mode and character information. If v is zero, the EOS con-
figuration is disabled. Otherwise, the low byte is the EOS charac-
ter and the upper byte contains flags defining the EOS mode. The
different EOS configurations and the corresponding values of v as
the following table:

Value of v
EOS mode - ;
Bit High Byte Low Byte
Terminate read when EOS is detected. A 00000100 | EOS character
Set EOI with EOS on write function. B 00001000 | EOS character

Compare all 8 bits of EOS byte rather than low 7

bits (all read and write functions). c 00010000 EOS character

30 IEEE 488 Function Reference

A ADLINK
R, '

Configuration bits A and C determine how to terminate read 1/O
operations. If bit A is set and bit C is clear, a read ends when a
byte that matches the low seven bits of the EOS character is
received. If bits A and C are both set, a read ends when a byte that
matches all eight bits of the EOS character is received.

Configuration bits B and C determine when a write /O operation
asserts the GPIB EOQI line. If bit B is set and bit C is clear, EOIl is
asserted when the written character matches the low seven bits of
the EOS character. If bits B and C are both set, EOI is asserted
when the written character matches all eight bits of the EOS char-
acter.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP

IEEE 488 Function Reference 31

A
'’

ADLINK

TECHNOLOGY INC.

2.12 ibfind

@ Description

Open and initialize a GPIB board descriptor. The returned board
descriptor can be used in subsequent calls. ibfind performs the
equivalent of an ibonl 1 to initialize the board descriptor. The
descriptor returned by ibfind is valid until the board is put offline
using ibonl 0. If ibfind is unable to get a valid descriptor, a -1 is
returned; the ERR bit is set in ibsta and iberr contains EDVR.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibfind (const char *boardname)
Visual Basic

ilfind(Byval boardname As String) As Integer
or
call ibfind (Byval boardname As String, ud As
Integer)
@ Parameter

boardname: the board name, e.g. gpib0.

@ Return Code

The board descriptor or -1.

@ Possiable Error Codes
EBUS, ECIC, EDVR, ENEB

32

IEEE 488 Function Reference

A ADLINK
R, '

2.13 ibgts

@ Description

Set the board from active controller state to Standby Controller
state. ibgts causes the GPIB interface to go to Standby Controller
and the GPIB ATN line to be unasserted.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibgts (int ud, int shadow_handshake)
Visual Basic

ilgts (Byval ud As Integer, ByVal v As Integer)
As Integer
or
call ibgts (Byval ud As Integer, ByVal v As
Integer)
@ Parameter
ud: the board descriptor

v: determines whether to perform acceptor handshaking

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EADR , EARG, ECIC, EDVR, ENEB, EOIP

IEEE 488 Function Reference 33

A ADLINK
R, '

2.14 ibist

@ Description

Set or clear the board individual status (ist) bit for parallel polls.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibist (int ud, int ist)
Visual Basic

ilist (Byval ud As Integer, ByVal v As Integer)
As Integer

or

call ibist (Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the board descriptor
v: indicates whether to set or clear the ist bit

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP

34 IEEE 488 Function Reference

A ADLINK
R, '

2.15 iblines

@ Description

Return the status of the GPIB control lines. The low-order byte
(bits O through 7) of lines indicating the capability of the GPIB
interface to sense the status of each GPIB control line. The upper
byte (bits 8 through 15) indicates the GPIB control line state infor-
mation. The following is the description of each byte.

7 6 5 4 3 2 1 0
EOI | ATN | SRQ [REN | IFC | NRFD | NDAC | DAV

To determine if a GPIB control line is asserted, first check the
appropriate bit in the lower byte to determine if the line can be
monitored. If the line can be monitored (indicated by a 1 in the
appropriate bit position), check the corresponding bit in the upper
byte. If the bit is set (1), the corresponding control line is asserted.
If the bit is clear (0), the control line is unasserted.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int iblines(int ud, short *line_status)
Visual Basic

illines(ByVal ud As Integer, lines As Integer) As

Integer

or

call iblines(ByVval ud As Integer, lines As
Integer)

@ Parameter
ud: the board descriptor

line_status: return GPIB control line state information

IEEE 488 Function Reference 35

A ADLINK
R, '

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP

36

IEEE 488 Function Reference

A ADLINK
R, '

2.16 ibln

@ Description
Checks whether a device is present on the bus.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibIn(int ud, int pad, int sad, short
*found_listener)
Visual Basic

illn (Byval ud As Integer, ByVal pad As Integer,
ByVal sad As Integer, found_listener As
Integer) As Integer

or

call ibln (Byval ud As Integer, ByVal pad As
Integer, ByVal sad As Integer,
found_listener As Integer)

@ Parameter

ud: the board or device descriptor. If ud is a board descriptor, the
bus associated with that board is tested for Listeners. If ud is a
device descriptor, ibln uses the access board associated with that
device to test for Listeners. If a Listener is detected, a non-zero
value is returned in found_listener. If no Listener is found, zero is
returned

pad: the primary address of the device (a value between 0 and
30).

sad: the secondary address of the device (a value between 96 to
126 or NO_SAD or ALL_SAD, where NO_SAD is no secondary
address is to be tested, i.e. only a primary address is tested and
ALL_SAD designates that all secondary addresses are to be
tested),

found_listener: indicates if a device is present

IEEE 488 Function Reference 37

A ADLINK
R, '

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EARG, ECIC, EDVR, ENEB, EOIP

38 IEEE 488 Function Reference

A ADLINK
R, '

2.17 ibloc

@ Description

For a board, ibloc place the board in local mode, if it is not in a
lockout state. The board is in a lockout state if LOK does not
appear in the status word ibsta. If the board is in a lockout state,
the call has no effect.

The ibloc function is used to simulate a front panel RTL (Return to
Local) switch if the computer is used as an instrument.

For a device, unless the REN (Remote Enable) line has been
unasserted with the ibsre function, all device-level calls automati-
cally place the specified device in remote program mode. ibloc is
used to move devices temporarily from a remote program mode to
a local mode until the next device function is executed on that
device.

@ Support Level

Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibloc (int ud)
Visual Basic

illoc(Byval ud As Integer) As Integer
or
call ibloc (Byval ud As Integer)

@ Parameter

ud: the board or device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EBUS, ECIC, EDVR, ENEB, EOIP

IEEE 488 Function Reference 39

A ADLINK
R, '

2.18 ibonl

@ Description

Resets the board or device, sets all its software configuration
parameters in their pre-configured state and place the device
online or offline. If a device or an interface is taken offline, the
board or device descriptor is no longer valid. You have to call
ibdev or ibfind to access the board or device again.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibonl (int ud, int onl)
Visual Basic

ilonl (Byval ud As Integer, ByVal onl As Integer)
As Integer

or

call ibonl (Byval ud As Integer, ByVal onl As
Integer)

@ Parameter
ud: the board or device descriptor.
onl: online (1) or offfline (0).

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, ENEB

40 IEEE 488 Function Reference

A ADLINK
R, '

2.19 ibnotify

@ Description

Notify user of one or more GPIB events by invoking the user spec-
ified callback.

After an asynchronous 1/O operation has completed, resynchroni-
zation of the handler is required and the global variables passed
into the Callback after I/O has completed contain the status of the
I/O operation.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibnotify (int ud, int mask,
GpibNotifyCallback_t Callback, void
*RefData)
@ Parameter

ud: the board or device descriptor.

IEEE 488 Function Reference 41

A ADLINK
R, '

mask: bit mask of GPIB events. The valid event mask are the fol-
lowing:

» 0: no mask

» TIMO: the timeout period (see ibtmo) to limit the notify
period
END: END or EOS is detected
SRQI: SRQ is asserted (board-level only)
RQS: Device requested service (device-level only)
CMP: /O is complete
LOK: GPIB interface is in Lockout State (board-level only)
REM: GPIB interface is in Remote State (board-level only)
CIC: GPIB interface is CIC (board-level only)
ATN: Attention is asserted (board-level only)
TACS: GPIB interface is Talker (board-level only)
LACS: GPIB interface is Listener (board-level only)
DTAS: GPIB interface is in Device Trigger State (boardlevel
only)
DCAS: GPIB interface is in Device Clear State (board-level
only).
If mask is non-zero, ibnotify monitors the events specified by
mask, and when one or more of the events is true, the Callback
is invoked. For a board-level ibnotify call, all mask bits are valid
except for ERR and RQS. For a device-level ibnotify call, the
only valid mask bits are CMPL, TIMO, END, and RQS. If TIMO
is set in the notify mask, ibnotify calls the callback function
when the timeout period has elapsed, if one or more of the
other specified events have not already occurred. If TIMO is

not set in the notify mask, the callback is not called until one or
more of the specified events occur.

vVvVvvvVvVvVVYVvyYVYyYVYY

v

42 IEEE 488 Function Reference

A ADLINK
R, '

Cal Iback: the address callback function.

» Callback Prototype for ibnotify

> int __std call Callback (int LocalUd, int Locallbsta, int
Locallberr, long Locallbentl, void *RefData)

» Callback Parameters

> LocalUd : Board or device descriptor

> Locallbsta : Value of ibsta

> Locallberr : Value of iberr

> Locallbentl : Value of ibentl

> RefData : User-defined reference data for the callback
» Callback Return Value

> Bit mask of the GPIB events to notice next.
» Possible Error Code

> EDVR

RefData: user-defined reference data for the callback.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, ECAP, EDVR, ENEB, EOIP

IEEE 488 Function Reference 43

A ADLINK
R, '

2.20 ibpad

@ Description

Set primary GPIB address of a board or a device.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibpad (int ud, int v)
Visual Basic

ilpad(Byval ud As Integer, ByVal v As Integer) As

Integer

or

call ibpad(Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the board or device descriptor.

v: the GPIB primary address. The valid range of value is 0 through
30.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP

44 IEEE 488 Function Reference

A ADLINK
R, '

2.21 ibsad

@ Description

Set or disable secondary GPIB address of a board or a device.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibsad(int ud, int v)
Visual Basic

ilsad(Byval ud As Integer, ByVal v As Integer) As

Integer

or

call ibsad (Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the board or device descriptor.

V: set or disable the GPIB secondary address. If If v is zero, sec-
ondary addressing is disabled. If v is non-zero, the secondary
address is enabled and valid range of value is 96 to 126 (0x60 to
OX7E).

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP

IEEE 488 Function Reference 45

A
'’

ADLINK

TECHNOLOGY INC.

2.22 ibpct

@ Description

Pass Controller-in-Charge (CIC) status to another GPIB device
with Controller capability. The access board automatically unas-
serts the ATN line and goes to Controller Idle State (CIDS).

@ Support Level

Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibpct (int ud)
Visual Basic

ilpct (Byval ud As Integer) As Integer
or
call ibpct (Byval ud As Integer)

@ Parameter

ud: the device descriptor.

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, ENEB, EOIP

46

IEEE 488 Function Reference

A ADLINK
R, '

2.23 ibppc

@ Description
Configure Parallel Polling.

If ud is a device descriptor, ibppc enables or disables the device
from responding to parallel polls. The device is addressed and
sent the appropriate parallel poll message parallel Poll Enable
(PPE) or Disable (PPD). Valid parallel poll messages are 96 to 126
(hex 60 to hex 7E) or zero to send PPD.

If ud is a board descriptor, ibppc performs a local parallel poll con-
figuration using the parallel poll configuration value v. Valid parallel
poll messages are 96 to 126 (hex 60 to hex 7E) or zero to send
PPD. If no error occurs during the call, iberr contains the previous
value of the local parallel poll configuration.

@ Support Level

Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibppc (int ud, int v)
Visual Basic

ilppc (Byval ud As Integer, ByVal v As Integer)
As Integer

or

call ibppc (Byval ud As Integer, ByvVal v As
Integer)

@ Parameter
ud: The device descriptor.
v: parallel poll enable/disable value.

@ Return Code

The value of ibsta.

IEEE 488 Function Reference 47

A ADLINK
R, '

@ Possiable Error Codes
EARG, EBUS, ECAP, ECIC, EDVR, ENEB, EOIP

48 IEEE 488 Function Reference

A ADLINK
R, '

2.24 ibrd

@ Description
Reads data from a device into the user specified buffer.

If ud is a device descriptor, ibrd addresses the GPIB, reads up to
count bytes of data, and places the data into the user buffer. The
operation terminates normally when count bytes have been
received or END is received. The operation terminates with an
error if the transfer could not complete within the timeout period.
The actual number of bytes transferred is returned in the global
variable ibcntl.

If ud is a board descriptor, ibrd reads up to count bytes of data and
places the data into the buffer. A board-level ibrd assumes that the
GPIB is already properly addressed. The operation terminates
normally when count bytes have been received or END is
received. The operation terminates with an error if the transfer
could not complete within the timeout period or, if the board is not
CIC, the CIC sends a Device Clear on the GPIB. The actual num-
ber of bytes transferred is returned in the global variable ibcntl.

@ Support Level

Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibrd (int ud, void *buf, long cnt)
Visual Basic

ilrd (Byval ud As Integer, buf As String, ByVal
cnt As Long) As Integer

or

call ibrd (Byval ud As Integer, buf As String)

@ Parameter
ud: the device descriptor.

buf: the buffer to store the data read from the GPIB.
cnt: number of bytes to be read from the GPIB.

IEEE 488 Function Reference 49

A ADLINK
R, '

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EABO, EADR, EBUS, ECIC, EDVR, ENEB, EOIP

50 IEEE 488 Function Reference

A ADLINK
R, '

2.25 ibrda

@ Description

Reads data asynchronously from a device into the user specified
buffer .

If ud is a device descriptor, ibrda addresses the GPIB, reads up to
count bytes of data, and places the data into the buffer. The opera-
tion terminates normally when count bytes have been received or
END is received. The operation terminates with an error if the
transfer could not complete within the timeout period. The actual
number of bytes transferred is returned in the global variable
ibentl.

If ud is a board descriptor, ibrda reads up to count bytes of data
and places the data into the buffer. A board-level ibrda assumes
that the GPIB is already properly addressed. The operation termi-
nates normally when count bytes have been received or END is
received. The operation terminates with an error if the transfer
could not complete within the timeout period or, if the board is not
CIC, the CIC sends a Device Clear on the GPIB. The actual num-
ber of bytes transferred is returned in the global variable ibcntl.

The asynchronous 1I/O calls (ibcmda, ibrda, ibwrta) are designed
so that applications can perform other non-GPIB operations while
the I/O is in progress. Once the asynchronous I/O has begun, fur-
ther GPIB calls are strictly limited. Any calls that would interfere
with the I/O in progress are not allowed, the driver returns EOIP in
this case.

Once the I/O is complete, the application must resynchronize with
the adlgpib driver.

IEEE 488 Function Reference 51

A ADLINK
R, '

Resynchronization is accomplished by using one of the following
three functions:

» ibwait: If the returned ibsta mask has the CMPL bit set, the
driver and application are resynchronized.

» ibnotify: If the ibsta value passed to the ibnotify callback
contains CMPL, the driver and application are resynchro-
nized.

» ibstop: The I/O is canceled; the driver and application are
resynchronized.

» ibonl: The I/O is canceled and the interface is reset; the
driver and application are resynchronized.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibrda (int ud, void *buf, long cnt)
Visual Basic

ilrda (Byval ud As Integer, buf As String, ByVal
cnt As Long) As Integer

or

call ibrda (Byval ud As Integer, buf As String)

@ Parameter
ud: the device descriptor.

buf: the buffer to store the data read from the GPIB.
cnt: number of bytes to be read from the GPIB.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EABO, EADR, EBUS, ECIC, EDVR, ENEB, EOIP

52 IEEE 488 Function Reference

A ADLINK
R, '

2.26 ibrdf

@ Description
Reads data from a device into a file.

If ud is a device descriptor, ibrdf addresses the GPIB, reads data
from a GPIB device, and places the data into the file. The opera-
tion terminates normally when END is received. The operation ter-
minates with an error if the transfer could not complete within the
timeout period. The actual number of bytes transferred is returned
in the global variable ibcntl.

If ud is a board descriptor, ibrdf reads data from a GPIB device
and places the data into the file. A board-level ibrdf assumes that
the GPIB is already properly addressed. The operation terminates
normally when END is received. The operation terminates with an
error if the transfer could not complete within the timeout period or,
if the board is not CIC, the CIC sends a Device Clear on the GPIB.
The actual number of bytes transferred is returned in the global
variable ibcntl.

@ Support Level

Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibrdf (int ud, const char *filename)
Visual Basic

ilrdf (Byval ud As Integer, ByVal filename As
String) As Integer

or

call ibrdf (Byval ud As Integer, ByVal filename
As String)

@ Parameter
ud: the device descriptor.
fi1lename: the name of the file where the read data are stored.

IEEE 488 Function Reference 53

A ADLINK
R, '

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EABO, EADR, EBUS, ECIC, EDVR, EFSO, ENEB, EOIP

54 IEEE 488 Function Reference

A ADLINK
R, '

2.27 ibrpp

@ Description
Perform a parallel poll.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibrpp (int ud, char *ppr)
Visual Basic

ilrpp (Byval ud As Integer, ppr As Integer) As
Integer

or

call ibrpp (Byval ud As Integer, ppr As Integer)

@ Parameter
ud: the device descriptor.
ppr: the result of parallel poll.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EBUS, ECIC, EDVR, ENEB, EOIP

IEEE 488 Function Reference 55

A ADLINK
R, '

2.28 ibrsc

@ Description

Request or release the System Controller capability by sending
Interface Clear (IFC) and Remote Enable (REN) messages to
devices. If the board releases system control, perforn opertions
requiring System Controller capability are not allowed. If the board
requests system control, calls operation requiring System Control-
ler capability are subsequently allowed.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibrsc (int ud, int v)
Visual Basic

ilrsc (Byval ud As Integer, ByVal v As Integer)
As Integer

or

call ibrsc(Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the device descriptor.

v: 0: release system control

1: request system control.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP

56

IEEE 488 Function Reference

A ADLINK
R, '

2.29 ibrsp

@ Description

Perform a serial poll. If bit 6 (hex 40) of the response is set, the
device is requesting service. When the automatic serial polling
feature is enabled, the device might have already been polled. In
this case, ibrsp returns the previously acquired status byte.

@ Support Level

Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibrsp (int ud, char *spr)
Visual Basic

ilrsp (Byval ud As Integer, spr As Integer) As
Integer

or

call ibrsp(Byval ud As Integer, spr As Integer)

@ Parameter
ud: the device descriptor.
spr: the result of serial poll.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EABO, EARG, EBUS, ECIC, EDVR, ENEB, EOIP, ESTB

IEEE 488 Function Reference 57

A ADLINK
R, '

2.30 ibrsv

@ Description

Request service and change the serial poll status byte.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

ibrsv (int ud, int v)
Visual Basic

ilrsv (Byval ud As Integer, ByVal v As Integer)
As Integer
or
call ibrsv (Byval ud As Integer, ByVal v As
Integer)
@ Parameter
ud: the device descriptor.

v: Serial poll status byte.

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP

58 IEEE 488 Function Reference

A ADLINK
R, '

2.31 ibsic

@ Description

Asserts the GPIB interfaces clear (IFC) line for at least 100 ns if
the GPIB interface is System Controller. This initializes the GPIB
and makes the interface CIC and Active Controller with ATN
asserted.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibsic (int ud)
Visual Basic

ilsic (Byval ud As Integer) As Integer
or
call ibsic (Byval ud As Integer)

@ Parameter

ud: the device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP, ESAC

IEEE 488 Function Reference 59

A ADLINK
R, '

2.32 ibsre

@ Description

Set or clear the Remote Enable (REN) line. If remote enable line is
set, the GPIB Remote Enable (REN) line is asserted. If remote
enable line is cleared, REN is unasserted. REN is used by devices
to choose between local and remote modes of operation. A device
should not actually enter remote mode until it receives its listen
address and REN is asserted.

@ Support Level
Board level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibsre(int ud, int v)
Visual Basic

ilsre (Byval ud As Integer, ByVal v As Integer)
As Integer

or

call ibsre(Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the board descriptor.

v: 0: clear REN line.
1: set REN line

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EDVR, ENEB, EOIP, ESAC

60 IEEE 488 Function Reference

A ADLINK
R, '

2.33 ibstop

@ Description

Abort asynchronous mode of 1/0 operation. If asynchronous 1/O is
in progress, the error bit is set in the status word, ibsta, and EABO
is returned, indicating that the I/O was successfully stopped.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibstop(int ud)
Visual Basic

ilstop (Byval ud As Integer) As Integer
or
call ibstop(Byval ud As Integer)

@ Parameter

ud: the board or device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EABO, EBUS, EDVR, ENEB

IEEE 488 Function Reference 61

A ADLINK
R, '

2.34 ibtmo

@ Description

Set the timeout period of the board or device. The timeout period
is the maximum duration allowed for a synchronous I/O operation
(for example, ibrd and ibwrt) or for an ibwait or ibnotify operation
with TIMO in the wait mask. If the operation does not complete
before the timeout period elapses, the operation is aborted and
TIMO is returned in ibsta.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibtmo(int ud, int v)
Visual Basic

iltmo (Byval ud As Integer, ByVal v As Integer)
As Integer

or

call ibtmo (Byval ud As Integer, ByVal v As
Integer)

@ Parameter
ud: the board or device descriptor.
v: timeout code. The valid timeout codes are the following:

Constant | Value of v| MinimumTimeout
TNONE 0 Disabled - no timeout
T10us 1 10 ps

T30us 2 30 ps

T100us 3 100 ps

T300us 4 300 ps

T1ims 5 1ms

T3ms 6 3ms

62 IEEE 488 Function Reference

Constant | Value of v| MinimumTimeout
T10ms 7 10 ms
T30ms 8 30 ms
T100ms 9 100 ms
T300ms 10 300 ms
Tls 11 1s
T3s 12 3s
T10s 13 10s
T30s 14 30s
T100s 15 100 s
T300s 16 300s
T1000s 17 1000 s

@ Return Code

The value of ibsta.

@ Possiable Error Codes

EARG, EDVR, ENEB, EOIP

A
'’

ADLINK

TECHNOLOGY INC.

IEEE 488 Function Reference

63

A ADLINK
R, '

2.35 ibtrg

@ Description
Send the Group Execute Trigger (GET) message to the device.

@ Support Level

Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibtrg (int ud)
Visual Basic

iltrg (Byval ud As Integer) As Integer
or
call ibtrg(Byval ud As Integer)

@ Parameter

ud: the device descriptor.

@ Return Code

The value of ibsta.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, ENEB, EOIP

64 IEEE 488 Function Reference

A ADLINK
R, '

2.36 ibwait
@ Description

Monitor the events specified by mask and delays processing until
one or more of the events occurs. If the wait mask is zero, ibwait
returns immediately with the updated ibsta. If TIMO is set in the
wait mask, ibwait returns when the timeout period has elapsed, if
one or more of the other specified events have not already
occurred. If TIMO is not set in the wait mask, the function waits
indefinitely for one or more of the specified events to occur. The
existing ibwait mask bits are identical to the ibsta bits. If ud is a
device descriptor, the only valid wait mask bits are TIMO, END,
RQS, and CMPL. If ud is a board descriptor, all wait mask bits are
valid except for RQS. You can configure the timeout period using
the ibtmo function.

@ Support Level

Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++
Int ibwait (int ud, int mask)
Visual Basic
ilwait (ByvVal ud As Integer, ByVal mask As
Integer) As Integer
or
call ibwait (Byval ud As Integer, ByVal mask As
Integer)

@ Parameter
ud: the board or device descriptor.

mask: GPIB events to wait for. The valid mask codes are listed in
the following table:

Mask | Bit Pos. | Hex Value Description
ERR 15 8000 GPIB error
TIMO 14 4000 Time limit exceeded

IEEE 488 Function Reference

65

_é. ADLINIK
PR, oSy

Mask | Bit Pos. | Hex Value Description

END 13 2000 GPIB board detected END or EOS

SRQI 12 1000 SRQ asserted (board only)

RQS 11 800 Device requesting service (device only)
SPOLL 10 400 The board has been serial polled by theController
EVENT 9 200 A DTAS, DCAS, or IFC event has occurred
CMPL 8 100 1/0O completed

LOK 7 80 GPIB board is in Lockout State

REM 6 40 GPIB board is in Remote State

CIC 5 20 GPIB board is CIC

ATN 4 10 Attention is asserted
TACS 3 8 GPIB board is Talker
LACS 2 4 GPIB board is Listener
DTAS 1 2 GPIB board is in Device Trigger State
DCAS 0 1 GPIB board is in Device Clear State

@ Return Code

The value of

ibsta.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, ENEB, ESRQ

66

IEEE 488 Function Reference

A ADLINK
R, '

2.37 ibwrt

@ Description
Write data to a device from a data buffer.

If ud is a device descriptor, ibwrt addresses the GPIB and writes
count bytes from the memory to a GPIB device. The operation ter-
minates normally when count bytes have been sent. The operation
terminates with an error if count bytes could not be sent within the
timeout period. The actual number of bytes transferred is returned
in the global variable ibcntl.

If ud is a board descriptor, ibwrt writes count bytes of data from the
buffer to a GPIB device; a board-level ibwrt assumes that the
GPIB is already properly addressed. The operation terminates
normally when count bytes have been sent. The operation termi-
nates with an error if count bytes could not be sent within the time-
out period or, if the board is not CIC, the CIC sends Device Clear
on the GPIB. The actual number of bytes transferred is returned in
the global variable ibcntl.

@ Support Level

Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibwrt (int ud, const void *buf, long count)
Visual Basic

ilwrt (Byval ud As Integer, ByVal buf As String,
ByVal cnt As Long) As Integer

or

call ibwrt (Byval ud As Integer, ByVal buf As
String)

@ Parameter
ud: device unit descriptor

buf: the buffer contains data bytes to sent
cnt: number of data bytes to sent

IEEE 488 Function Reference 67

A ADLINK
R, '

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EADR, EABO, EBUS, ECIC, EDVR, EOIP, ENEB, ENOL

68 IEEE 488 Function Reference

A ADLINK
R, '

2.38 ibwrta

@ Description
Write data asynchronously to a device from a data buffer.

If ud is a device descriptor, ibwrt addresses the GPIB and writes
count bytes from the memory to a GPIB device. The operation ter-
minates normally when count bytes have been sent. The operation
terminates with an error if count bytes could not be sent within the
timeout period. The actual number of bytes transferred is returned
in the global variable ibcntl.

If ud is a board descriptor, ibwrt writes count bytes of data from the
buffer to a GPIB device; a board-level ibwrt assumes that the
GPIB is already properly addressed. The operation terminates
normally when count bytes have been sent. The operation termi-
nates with an error if count bytes could not be sent within the time-
out period or, if the board is not CIC, the CIC sends Device Clear
on the GPIB. The actual number of bytes transferred is returned in
the global variable ibcntl.

The asynchronous 1I/O calls (ibcmda, ibrda, ibwrta) are designed
so that applications can perform other non-GPIB operations while
the I/O is in progress. Once the asynchronous I/O has begun, fur-
ther GPIB calls are strictly limited. Any calls that would interfere
with the 1/O in progress are not allowed, the driver returns EOIP in
this case.

Once the /O is complete, the application must resynchronize with
the adlgpib driver.

IEEE 488 Function Reference 69

A ADLINK
R, '

Resynchronization is accomplished by using one of the following
three functions:

» ibwait: If the returned ibsta mask has the CMPL bit set, the
driver and application are resynchronized.

» ibnotify: If the ibsta value passed to the ibnotify callback
contains CMPL, the driver and application are resynchro-
nized.

» ibstop: The I/O is canceled; the driver and application are
resynchronized.

» ibonl: The I/O is canceled and the interface is reset; the
driver and application are resynchronized.

@ Support Level
Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibwrta (int ud, const void *buf, long count

)
Visual Basic

ilwrta (Byval ud As Integer, ByVval buf As String,
ByVal cnt As Long) As Integer

or

call ibwrta (Byval ud As Integer, ByVal buf As
String)

@ Parameter

ud: device unit descriptor

buf: the buffer contains data bytes to sent
cnt: number of data bytes to sent

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EADR, EABO, EBUS, ECIC, EDVR, EOIP, ENEB, ENOL

70 IEEE 488 Function Reference

A ADLINK
R, '

2.39 ibwrtf

@ Description
Write data to a device from a file.

If ud is a device descriptor, ibwrtf addresses the GPIB and writes
all of the bytes from the file flname to a GPIB device. The opera-
tion terminates normally when all of the bytes have been sent. The
operation terminates with an error if all of the bytes could not be
sent within the timeout period. The actual number of bytes trans-
ferred is returned in the global variable ibcntl.

If ud is a board descriptor, ibwrtf writes all of the bytes of data from
the file flname to a GPIB device. A board-level ibwrtf assumes that
the GPIB is already properly addressed. The operation terminates
normally when all of the bytes have been sent. The operation ter-
minates with an error if all of the bytes could not be sent within the
timeout period, or if the board is not CIC, the CIC sends a Device
Clear on the GPIB. The actual number of bytes transferred is
returned in the global variable ibcntl.

@ Support Level

Board / Device level

@ Syntax
Microsoft C/C++ and Borland C++

Int ibwrtf(int ud, const char *file_path)
Visual Basic

ilwrtf (Byval ud As Integer, Byval filename As
String) As Integer

or

call ibwrtf (Byval ud As Integer, Byval filename
As String)

@ Parameter
ud: the device descriptor.
filename: the name of the file containing the data to write.

IEEE 488 Function Reference 71

A ADLINK
R, '

@ Return Code
The value of ibsta.

@ Possiable Error Codes
EABO, EADR, EBUS, ECIC, EDVR, EFSO, ENEB, EOIP

72 IEEE 488 Function Reference

A ADLINK
R, '

3 Multi-Device IEEE 488 Function
Reference

3.1 AllSpoll

@ Description

Perform serial poll one or more devices. The poll responses are
stores in resultList and the number of responses in ibcntl.

@ Syntax
Microsoft C/C++ and Borland C++

void AllSpoll(int board_desc, const Addr4882_t
addressList[], short resultList[])
Visual Basic

call AllSpoll (Byval board_desc As Integer,
addressList () As Integer, resultList () As
Integer)

@ Parameter

board_desc: board id

addressList: the list of device addresses that is terminated by
NOADDR

resultList: the list of serial poll response bytes corresponding
to device addresses in addrlist

@ Possiable Error Codes
EARG, EABO, EBUS, ECIC, EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 75

A ADLINK
R, '

3.2 DevClear

@ Description

Send the Selected Device Clear (SDC) GPIB message to clear a
device. If address is the constant NOADDR, the Universal Device
Clear (DCL) message is sent to all devices.

@ Syntax
Microsoft C/C++ and Borland C++

void DevClear(int board_desc, Addr4882_t address

)
Visual Basic

call DevClear(ByVal board_desc As Integer, ByVal
address As Integer)
@ Parameter
board_desc: board id

address: the device address wishing to be cleared

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB

76 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.3 DevClearList

@ Description

Clear mutiple devices. If address is the constant NOADDR, the
Universal Device Clear (DCL) message is sent to all devices.

@ Syntax
Microsoft C/C++ and Borland C++

void DevClearList (int board_desc, const
Addr4882_t addressList[])
Visual Basic

call DevClearList (Byval ud As Integer,
addressList () As Integer)
@ Parameter
board_desc: board id

addressList: a list of the device addresses terminated by
NOADDR wishing to be cleared

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 77

A ADLINK
R, '

3.4 EnablelLocal

@ Description

Enable operations from the front panel of devices by sending the
Go To Local (GTL) GPIB message to multiple devices. This places
the devices into local mode. If addrlist contains only the constant
NOADDR, the Remote Enable (REN) GPIB line is unasserted.

@ Syntax
Microsoft C/C++ and Borland C++

void EnableLocal(int board_desc, const
Addr4882_t addressList[])
Visual Basic

call EnableLocal(ByVal ud As Integer, addressList
(O As Integer)
@ Parameter
board_desc: board id

addressList: a list of the device addresses terminated by
NOADDR wishing to go to local.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ESAC

78 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.5 EnableRemote

@ Description

Enable remote GPIB programming for devices by asserting the
Remote Enable (REN) GPIB line. The devices are put into a listen-
active state.

@ Syntax
Microsoft C/C++ and Borland C++

void EnableRemote (int board_desc, const
Addr4882_t addressList[])
Visual Basic

call EnableRemote (ByVal ud As Integer,
addressList () As Integer)
@ Parameter
board_desc: board id

addressList: a list of the device addresses terminated by
NOADDR wishing to go to local.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ESAC

Multi-Device IEEE 488 Function Reference 79

A
'’

ADLINK

TECHNOLOGY INC.

3.6 FindLstn

@ Description

Find listening devices on the GPIB bus. This function tests all of
the primary addresses in padlist as follows: If a device is present
at a primary address given in padlist, the primary address is stored
in resultlist. Otherwise, all secondary addresses of the primary
address are tested, and the addresses of any devices found are
stored in resultlist. ibcntl contains the actual number of addresses
stored in resultlist.

@ Syntax
Microsoft C/C++ and Borland C++
void FindLstn(int board_desc, const Addr4882_t
padList[], Addr4882_t resultList[], int
maxNumResults)
Visual Basic

call FindLstn (ByVal ud As Integer, padList () As
Integer, resultList () As Integer, ByVal
maxNumResults As Integer)

@ Parameter
board_desc: board id

padList: a list of the gpib primary addresses terminated by
NOADDR.

resultList: addresses of all listening devices found by FindL-
stn.

maxNumResul ts: maximum count of entries that can be placed in
resultList.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ETAB

Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.7 FindRQS

@ Description

Serial poll the devices to determine which device is requesting
service, until it finds a device which is requesting service. The
serial poll response byte is placed in result. ibcntl contains the
index of the device requesting service in addrList. If none of the
devices are requesting service, the index corresponding to
NOADDR in addrlist is returned in ibcntl and ETAB is returned in
iberr.

@ Syntax
Microsoft C/C++ and Borland C++

void FindRQS (int board_desc, const Addr4882_t
addressList[], short *result)
Visual Basic

call FindRQS (ByVal ud As Integer, addressList ()
As Integer, result As Integer)
@ Parameter
board_desc: board id

addressList: a list of the gpib primary addresses terminated by
NOADDR.

result: Serial poll response byte of the device that is requesting
service.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ETAB

Multi-Device IEEE 488 Function Reference 81

A ADLINK
R, '

3.8 PassControl

@ Description

Pass control to another GPIB device with Controller capability by
sending the Take Control (TCT) GPIB message to the device. The
device becomes Controller-In-Charge (CIC) and the interface is no
longer CIC.

@ Syntax
Microsoft C/C++ and Borland C++

void PassControl(int board_desc, Addr4882_t
address)
Visual Basic

call PassControl (ByVal board_desc As Integer,
ByVal address As Integer)
@ Parameter
board_desc: board id

address: a list of the gpib primary addresses terminated by
NOADDR.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB

82 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.9 PPoll

@ Description

Perform a parallel poll. The board sents command to each device
(see PPollConfig and PPollUnconfig). The Controller can use par-
allel polling to obtain one-bit, device-dependent status messages
from up to eight devices simultaneously

@ Syntax
Microsoft C/C++ and Borland C++

void PPoll(int board_desc, short *result)
Visual Basic

call Ppoll(ByVal board_desc As Integer, result As
Integer)
@ Parameter
board_desc: board id

result: The parallel poll result.

@ Possiable Error Codes
EBUS, ECIC, EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 83

A
'’

ADLINK

TECHNOLOGY INC.

3.10 PPollConfig

@ Description

Configures the device to respond to parallel polls by asserting or
not asserting the GPIB data line, dataline. If lineSense equals the
individual status (ist) bit of the device, the assigned GPIB data line
is asserted during a parallel poll. Otherwise, the data line is not
asserted during a parallel poll. The Controller can use parallel poll-
ing to obtain 1-bit, device-dependent status messages from up to
eight devices simultaneously.

@ Syntax
Microsoft C/C++ and Borland C++

void PPollConfig (int board_desc, Addr4882_t
address, int datalLine, int lineSense)
Visual Basic

call PpollConfig (ByVal ud As Integer, ByVal
address As Integer, ByVal datalLine As
Integer, ByVal lineSense As Integer)

@ Parameter
board_desc: board id
address: address of the device to be configured.

datalL ine: Data line (a value in the range of 1 to 8) on which the
device responds to parallel polls.

lineSense: Sense (either 0 or 1) of the parallel poll response.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB

84

Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.11 PPolluUnConfig

@ Description

Unconfigures the device to respond to parallel polls. If addrlist
contains only the constant NOADDR, the Parallel Poll Unconfigure
(PPU) GPIB message is sent to all GPIB devices. The devices
unconfigured by this function do not participate in subsequent par-
allel polls.

@ Syntax
Microsoft C/C++ and Borland C++

void PPollUnconfig (int board_desc, const
Addr4882_t addressList[])
Visual Basic

call PpollUnconfig(ByVval ud As Integer,
addressList () As Integer)
@ Parameter
board_desc: board id

addressList: A list of device addresses that is terminated by
NOADDR.

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 85

A ADLINK
R, '

3.12 RcvRespMsg

@ Description

Read data bytes from a device. RcvRespMsg assumes that the
interface is already in its listen-active state and a device is already
addressed to be a Talker. Data are read until either count data
bytes have been read or the termination condition is detected. If
the termination condition is STOPend, the read is stopped when a
byte is received with the EOI line asserted. Otherwise, the read is
stopped when the 8-bit EOS character is detected. The actual
number of bytes transferred is returned in the global variable,
ibentl.

@ Syntax
Microsoft C/C++ and Borland C++

void RcvRespMsg (int board_desc, void *buffer, long count, int
termination)

Visual Basic

call RevRespMsg (ByVal ud As Integer, buf As String, ByVal termi-
nation As Integer)

@ Parameter

board_desc: board id

buffer: the buffer which stores the read data.
count: Number of bytes read.

termination: Description of the data termination mode
(STOPend or an 8-bit EOS character).

@ Possiable Error Codes
EABO, EADR, EARG, ECIC, EDVR, EOIP, ENEB

86 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.13 ReadStatusByte

@ Description

Conduct serial polling single device. If bit 6 (hex 40) of the
response is set, the device is requesting service.

@ Syntax
Microsoft C/C++ and Borland C++

void ReadStatusByte (int board_desc, Addr4882_t
address, short *result)
Visual Basic

call ReadStatusByte (ByVal ud As Integer, ByVal
addr As Integer, result As Integer)

@ Parameter
board_desc: board id

address: device address.
result: the serial poll response byte.

@ Possiable Error Codes
EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 87

A ADLINK
R, '

3.14 Receive

@ Description
Reads data from a device into the user specified buffer.

Receive addresses the device described by address to talk and
the interface to listen, reads up to count bytes of data, and places
the data into the buffer. The operation terminates normally when
count bytes have been received or the termination condition is
detected. If the termination condition is STOPend, the read is
stopped when a byte is received with the EOI line asserted. Other-
wise, the read is stopped when an 8-bit EOS character is
detected. The actual number of bytes transferred is returned in the
global variable, ibcntl.

@ Syntax
Microsoft C/C++ and Borland C++

void Receive(int board_desc, Addr4882_t address,
void *buffer, long count, int termination)
Visual Basic

call Receive(ByVval ud As Integer, ByVal addr As
Integer, buf As String, ByVal termination As
Integer)

@ Parameter

board_desc: board id

address: address of the device to read data.
buffer: the buffer which stores the read data

termination: the data termination mode (STOPend or an EOS
character)

@ Possiable Error Codes
EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

88 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.15 ReceiveSetup

@ Description

Set a device to be a Talker and the interface to be a Listener. This
funciton is usually followed by a call to RcvRespMsg to transfer
data from the device to the interface. This call is useful to make
multiple calls to RcvRspMsg; it eliminates the need to readdress
the device to receive every block of data.

@ Syntax
Microsoft C/C++ and Borland C++

void ReceiveSetup(int board_desc, Addr4882_t
address)
Visual Basic

call ReceiveSetup(ByVal ud As Integer, Byval addr
As Integer)
@ Parameter
board_desc: board id
address: address of the device addressed to be a talker

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 89

A
'’

ADLINK

TECHNOLOGY INC.

3.16 ResetSys

@ Description

Reset and initialize devices. It includes three steps. The first step
resets the GPIB by asserting the Remote Enable (REN) line and
then the Interface Clear (IFC) line. The second step clears all of
the devices by sending the Universal Device Clear (DCL) GPIB
message. The final step causes devices to perform device-specific
reset and initialization. This step is accomplished by sending the
message "*RST\n" to the devices described by addrlist.

@ Syntax
Microsoft C/C++ and Borland C++

void ResetSys (int board_desc, const Addr4882_t
addressList[])
Visual Basic

call ResetSys (ByVal ud As Integer, addressList
(O As Integer)

@ Parameter

board_desc: board id

addressList: list of the device addresses that is terminated by
NOADDR

@ Possiable Error Codes
EABO, EARG, EBUS, ECIC, EDVR, ENOL, EOIP, ENEB,
ESAC

90

Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.17 Send

@ Description
Write data to a device from a data buffer.

The operation terminates normally when count bytes have been
sent. The last byte is sent with the EOI line asserted if eotmode is
DABend. The last byte is sent without the EOI line asserted if eot-
mode is NULLend. If eotmode is NLend then a new line character
(\n") is sent with the EOI line asserted after the last byte of buffer.
The actual number of bytes transferred is returned in the global
variable, ibcntl.

@ Syntax
Microsoft C/C++ and Borland C++

void Send (int board_desc, Addr4882_t address,
const void *buffer, long count, int
eot_mode)
Visual Basic

call Send (ByVal ud As Integer, ByVal addr As
Integer, ByVal buf As String, ByVal eot_mode
As Integer)

@ Parameter

board_desc: board id

address: device address
buffer: the data bytes to be sent
count: data count

eot_mode: the data termination mode: DABend, NULLend, or
NLend

@ Possiable Error Codes
EABO, EARG, EBUS, ECIC, EDVR, ENOL, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 91

A ADLINK
R, '

3.18 SendCmds

@ Description

Send GPIB command. The number of command bytes transferred
is returned in the global variable ibcntl

@ Syntax
Microsoft C/C++ and Borland C++

void SendCmds (int board_desc, const void *
cmdbuf, long count)
Visual Basic

call SendCmds(ByVal ud As Integer, ByVal cmdbuf
As String)

@ Parameter
board_desc: board id
cmdbuf: Command bytes to be sent

count: data count

@ Possiable Error Codes
EABO, ECIC, EDVR, ENOL, EOIP, ENEB

92 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.19 SendDataBytes

@ Description

Send number of bytes from the buffer to devices. SendDataBytes
assumes that the interface is in talk-active state and that devices
are already addressed as Listeners on the GPIB. The last byte is
sent with the EOI line asserted if eotmode is DABend; the last byte
is sent without the EOI line asserted if eotmode is NULLend. If eot-
mode is NLend then a new line character ('\n') is sent with the EOI
line asserted after the last byte. The actual number of bytes trans-
ferred is returned in the global variable, ibcntl.

@ Syntax
Microsoft C/C++ and Borland C++

void SendDataBytes (int board_desc, const void
*buffer, long count, int eotmode)
Visual Basic

call SendDataBytes(ByVal ud As Integer, ByVal buf
As String, Byval term As Integer)

@ Parameter

board_desc: board id

buffer: the data bytes to be sent
count: data count

eot_mode: the data termination mode: DABend, NULLend, or
NLend

@ Possiable Error Codes
EABO, EADR, EARG, EBUS, ECIC, EDVR, ENOL, EOIP,
ENEB

Multi-Device IEEE 488 Function Reference 93

A ADLINK
R, '

3.20 SendList

@ Description

Send data bytes to multiple GPIB devices. SendList addresses the
devices described by addrlist to listen and the interface to talk and
then data from buffer are sent to the devices. The last byte is sent
with the EOI line asserted if eotmode is DABend. The last byte is
sent without the EOI line asserted if eotmode is NULLend. If eot-
mode is NLend, a new line character (\n') is sent with the EOI line
asserted after the last byte. The actual number of bytes trans-
ferred is returned in the global variable, ibcntl.

@ Syntax
Microsoft C/C++ and Borland C++

void SendList(int board_desc, const Addr4882_t
addressList[], const void *buffer, long
count, int eotmode)
Visual Basic

call SendList(ByVal ud As Integer, addressList ()
As Integer, ByVal buf As String, Byval term
As Integer)

@ Parameter

board_desc: board id

addresslist: list of device addresses to send data
buffer: the data bytes to be sent

count: data count

eot_mode: the data termination mode: DABend, NULLend, or
NLend

@ Possiable Error Codes
EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

94 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.21 SendIFC

@ Description

Reset the GPIB by sending interface clear. SendIFC is used as
part of GPIB initialization. It forces the interface to be Controller-In-
Charge of the GPIB. It also ensures that the connected devices
are all un-addressed and that the interface calls of the devices are
in their idle states.

@ Syntax
Microsoft C/C++ and Borland C++

void SendIFC(int board_desc)
Visual Basic

call SendIFC(ByVval ud As Integer)

@ Parameter
board_desc: board id

@ Possiable Error Codes
ENEB, ESAC, EDVR, EOIP

Multi-Device IEEE 488 Function Reference 95

A ADLINK
R, '

3.22 SendLLO

@ Description

Send the Local Lockout (LLO) message to all devices. While Local
Lockout is in effect, only the Controller-In-Charge can alter the
state of the devices by sending appropriate GPIB messages.

SendLLO is reserved for use in unusual local/remote situations. In
the typical case of placing the devices in Remote With Local Lock-
out, use SetRWLS.

@ Syntax
Microsoft C/C++ and Borland C++

void SendLLO (int board_desc)
Visual Basic

call SendLLO (ByVval ud As Integer)

@ Parameter

board_desc: board id

@ Possiable Error Codes
EBUS, ECIC, ENEB, ESAC, EDVR, EOIP

96 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.23 SendSetup

@ Description

Set up devices to receive data. SendSetup makes the devices
described by addressList listen-active and makes the interface
talk-active. This call is usually followed by SendDataBytes to actu-
ally transfer data from the interface to the devices. SendSetup is
particularly useful to set up the addressing before making multiple
calls to SendDataBytes; it eliminates the need to readdress the
devices for every block of data.

@ Syntax
Microsoft C/C++ and Borland C++

void SendSetup (int board_desc, const Addr4882_t
addressList[])
Visual Basic

call SendSetup(ByVal ud As Integer, addrs() As
Integer)
@ Parameter
board_desc: board id

addresslist: list of device addresses that is terminated by
NOADDR

@ Possiable Error Codes
EABO, EARG, EBUS, ECIC, EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 97

A
'’

ADLINK

TECHNOLOGY INC.

3.24 SetRWLS

@ Description

Place devices in Remote With Lockout State. SetRWLS places the
devices described by addrlist in remote mode by asserting the
Remote Enable (REN) GPIB line. Then those devices are placed
in lockout state by the Local Lockout (LLO) GPIB message. You
cannot program those devices locally until the Controller-In-
Charge releases the Local Lockout by way of the EnableLocal call.

@ Syntax
Microsoft C/C++ and Borland C++

void SetRWLS (int board_desc, const Addr4882_t
addressList[])
Visual Basic

call SetRWLS (ByVal ud As Integer, addressList ()
As Integer)
@ Parameter
board_desc: board id

addresslist: list of device addresses that is terminated by
NOADDR

@ Possiable Error Codes
EARG, EBUS, ECIC, EDVR, EOIP, ENEB, ESAC

98

Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.25 TestSRQ

@ Description

Check the current state of the GPIB Service Request (SRQ) line. If
SRQ is asserted, result contains a non-zero value. Otherwise,
result contains a zero. Use TestSRQ to get the current state of the
GPIB SRQ line. Use WaitSRQ to wait until SRQ is asserted.

@ Syntax
Microsoft C/C++ and Borland C++

void TestSRQ (int board_desc, short *result)
Visual Basic

call TestSRQ (ByVal ud As Integer, result As
Integer)
@ Parameter
board_desc: board id

result:; State of the SRQ line: non-zero if the line is asserted,
zero if the line is not asserted.

@ Possiable Error Codes
EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 99

A ADLINK
R, '

3.26 TestSys

@ Description

Make the devices to conduct self tests. TestSys sends the "*TST?"
message to the devices. The "*TST?" message makes them to
conduct their self-test procedures. A 16-bit test result code is read
from each device. A test result of O\n indicates that the device
passed its self test. Refer to the documentation that came with the
device to determine the meaning of the failure code. Any other
value indicates that the device failed its self test. If the function
returns without an error (that is, the ERR bit is not set in ibsta),
ibcntl contains the number of services that failed. Otherwise, the
meaning of ibcntl depends on the error returned. If a device fails to
send a response before the timeout period expires, a test result of
? is reported for it, and the error EABO is returned.

@ Syntax
Microsoft C/C++ and Borland C++

void TestSys (int board_desc, Addr4882_t *
addrlist, short resultList[])
Visual Basic

call TestSys (ByVval ud As Integer, addrlist () As
Integer, resultList () As Integer)

@ Parameter
board_desc: board id

addrlist: a list of device addresses terminated by NOADDR.

resultList: A list of test results; each entry corresponds to an
address in addrlist.

@ Possiable Error Codes
EABO, EARG, EBUS, EDVR, ECIC, EOIP, ENEB, ENOL

100 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.27 Trigger

@ Description

Send the Group Execute Trigger (GET) GPIB message to single
device. If address is the constant NOADDR, the GET message is
sent to all devices that are currently listen-active on the GPIB.

@ Syntax
Microsoft C/C++ and Borland C++

void Trigger(int board_desc, Addr4882_t address

Visual Basic
call Trigger (ByVal ud As Integer, ByVal address

As Integer)
@ Parameter
board_desc: board id
address: the address of the device to be triggered.

@ Possiable Error Codes
EARG, EBUS, EDVR, ECIC, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 101

A ADLINK
R, '

3.28 TriggerList

@ Description

Send the Group Execute Trigger (GET) GPIB message to multiple
devices. If the only address in addrlist is the constant NOADDR,
no addressing is performed and the GET message is sent to all
devices that are currently listen-active on the GPIB.

@ Syntax
Microsoft C/C++ and Borland C++

void TriggerList (int board_desc, const
Addr4882_t addressList[])
Visual Basic

call TriggerList (ByvVal ud As Integer,
addressList () As Integer)
@ Parameter
board_desc: board id

addressList: a list of device addresses terminated by
NOADDR.

@ Possiable Error Codes
EARG, EBUS, EDVR, ECIC, EOIP, ENEB

102 Multi-Device IEEE 488 Function Reference

A ADLINK
R, '

3.29 WaitSRQ

@ Description

Wait until a device asserts the GPIB Service Request (SRQ) line.
When WaitSRQ returns, result contains a non-zero if SRQ is
asserted. Otherwise, result contains a zero. Use TestSRQ to get
the current state of the GPIB SRQ line. Use WaitSRQ to wait until
SRQ is asserted.

@ Syntax
Microsoft C/C++ and Borland C++

void WaitSRQ(int board_desc, short *result)
Visual Basic

call WaitSRQ (ByVal ud As Integer, result As
Integer)
@ Parameter
board_desc: board id

result: State of the SRQ line: non-zero if line is asserted, zero if
line is not asserted.

@ Possiable Error Codes
EDVR, EOIP, ENEB

Multi-Device IEEE 488 Function Reference 103

A ADLINK
R, '

104 Multi-Device IEEE 488 Function Reference

Appendix

Appendix A: Status Codes

All calls update a global status word, ibsta, which contains infor-
mation about the state of the GPIB and your GPIB hardware. You
can check for errors after each call using the ibsta ERR bit.

A ADLINK
R, '

ibsta is a 16-bit value. A bit value of one (1) indicates that a certain
condition is happened. A bit value of zero (0) indicates that the
condition is not happened.

Mnemonic | BitPos. | HexValue Type Description

ERR 15 8000 device, board GPIB error

TIMO 14 4000 ||device, board Timeout

END 13 2000 device, board END or EOS detected

SRQI 12 1000 board SRQ interrupt occurred

RQS 11 800 device Device requesting service
SPOLL 10 400 board Board has been serial polled by Controller
EVENT 9 200 board DCAS, DTAS, or IFC event has occurred
CMPL 8 100 device, board I/O completed

LOK 7 80 board Lockout State

REM 6 40 board Remote State

Cic 5 20 board Controller-In-Charge

ATN 4 10 board Attention is asserted

TACS 3 8 board Talker

LACS 2 4 board Listener

DTAS 1 2 board Device Trigger State
DCAS 0 1 board Device Clear State

Table 4-1: Status Codes
Appendix 105

A ADLINK
R, '

Appendix B: Error Codes

The following table lists the ADL-GPIB error codes. Remember that
the error variable is meaningful only when the ERR bit in the sta-
tus variable, ibsta, is set. For a detailed description of each error
and possible solutions, click on the error mnemonic.

ErrorMnemonic |iberrValue Meaning
EDVR 0 Operating system error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument
ESAC 5 GPIB board not System Controller as required
EABO 6 I/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EDMA 8 DMA error
EOIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table problem

Table 4-2: Error Codes

106 Appendix

A ADLINK
R, '

Warranty Policy

Thank you for choosing ADLINK. To understand your rights and
enjoy all the after-sales services we offer, please read the follow-
ing carefully.

1. Before using ADLINK's products please read the user man-
ual and follow the instructions exactly. When sending in
damaged products for repair, please attach an RMA appli-
cation form which can be downloaded from: http://
rma.adlinktech.com/policy/.

2. All ADLINK products come with a two-year guarantee:

» The warranty period starts from the product’s shipment
date from ADLINK’s factory.

» Peripherals and third-party products not manufactured
by ADLINK will be covered by the original manufactur-
ers' warranty.

» For products containing storage devices (hard drives,
flash cards, etc.), please back up your data before send-
ing them for repair. ADLINK is not responsible for loss of
data.

» Please ensure the use of properly licensed software with
our systems. ADLINK does not condone the use of
pirated software and will not service systems using such
software. ADLINK will not be held legally responsible for
products shipped with unlicensed software installed by
the user.

» For general repairs, please do not include peripheral
accessories. If peripherals need to be included, be cer-
tain to specify which items you sent on the RMA Request
& Confirmation Form. ADLINK is not responsible for
items not listed on the RMA Request & Confirmation
Form.

Warranty Policy 107

A ADLINK
R, '

3. Our repair service is not covered by ADLINK's two-year
guarantee in the following situations:

» Damage caused by not following instructions in the
user's manual.

» Damage caused by carelessness on the user's part dur-
ing product transportation.

» Damage caused by fire, earthquakes, floods, lightening,
pollution, other acts of God, and/or incorrect usage of
voltage transformers.

» Damage caused by unsuitable storage environments
(i.e. high temperatures, high humidity, or volatile chemi-
cals).

» Damage caused by leakage of battery fluid during or
after change of batteries by customer/user.

» Damage from improper repair by unauthorized techni-
cians.

» Products with altered and/or damaged serial numbers
are not entitled to our service.

» Other categories not protected under our warranty.

4. Customers are responsible for shipping costs to transport
damaged products to our company or sales office.

5. To ensure the speed and quality of product repair, please
download an RMA application form from our company web-
site: http://rma.adlinktech.com/policy. Damaged products
with attached RMA forms receive priority.

If you have any further questions, please email our FAE staff:
service@adlinktech.com.

108 Warranty Policy

	Table of Contents
	List of Tables
	List of Figures
	1 Using ADL-GPIB Functions
	1.1 The Fundamentals of Building Windows 2000/ NT/98 Application with ADL-GPIB
	Creating a Windows 2000/NT/98 ADL-GPIB Application Using Microsoft Visual C/C++
	Creating a Windows 2000/NT/98 ADL-GPIB Application Using Microsoft Visual Basic

	1.2 ADL-GPIB Functions Overview
	IEEE 488 Device Level Function Group
	IEEE 488 Board Level Function Group
	IEEE 488.2 Function Group

	1.3 Data Types

	2 IEEE 488 Function Reference
	2.1 ibask
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.2 ibbna
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.3 ibcac
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.4 ibclr
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.5 ibcmd
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.6 ibcmda
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.7 ibconfig
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.8 ibdev
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.9 ibdma
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.10 ibeot
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.11 ibeos
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.12 ibfind
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.13 ibgts
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.14 ibist
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.15 iblines
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.16 ibln
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.17 ibloc
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.18 ibonl
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.19 ibnotify
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.20 ibpad
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.21 ibsad
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.22 ibpct
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.23 ibppc
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.24 ibrd
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.25 ibrda
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.26 ibrdf
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.27 ibrpp
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.28 ibrsc
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.29 ibrsp
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.30 ibrsv
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.31 ibsic
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.32 ibsre
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.33 ibstop
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.34 ibtmo
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.35 ibtrg
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.36 ibwait
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.37 ibwrt
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.38 ibwrta
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	2.39 ibwrtf
	@ Description
	@ Support Level
	@ Syntax
	@ Parameter
	@ Return Code
	@ Possiable Error Codes

	3 Multi-Device IEEE 488 Function Reference
	3.1 AllSpoll
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.2 DevClear
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.3 DevClearList
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.4 EnableLocal
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.5 EnableRemote
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.6 FindLstn
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.7 FindRQS
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.8 PassControl
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.9 PPoll
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.10 PPollConfig
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.11 PPollUnConfig
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.12 RcvRespMsg
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.13 ReadStatusByte
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.14 Receive
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.15 ReceiveSetup
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.16 ResetSys
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.17 Send
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.18 SendCmds
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.19 SendDataBytes
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.20 SendList
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.21 SendIFC
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.22 SendLLO
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.23 SendSetup
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.24 SetRWLS
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.25 TestSRQ
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.26 TestSys
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.27 Trigger
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.28 TriggerList
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	3.29 WaitSRQ
	@ Description
	@ Syntax
	@ Parameter
	@ Possiable Error Codes

	Appendix
	Appendix A: Status Codes
	Appendix B: Error Codes

	Warranty Policy

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

